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PARTICLE DYNAMICS IN LINEAR RESONANCE ACCELERATORS.

I. M. Kapchinskiy.
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INTRODUCTION.

The linear accelerators of the charged/loaded atomic particles
at present increasingly more widely are applied in experimental
physics and in some areas of technology. This caused the consicerable
progress in the development both the theoretical problems, connected
with particle dynamics in the linear accelerators and the engineering
questions, connected with the constructions/designs of the
accelerating systems and auxiliary technological equipment. Basic
advantage of linear accelerators - simplicity of the beam extraction
of the accelerated particles. Linear accelerator makes it possible to
obtain the well collimated beam with the relatively greater
instantaneous intensity. One should note also that the linear
accelerators, as a rule, are reliable. Therefore they proved to be
the most adequate/approaching type of injector for the powerful/thick
proton synchrotrons. However, linear accelerators are convenient also
as the independent accelerators, since they can work in the
continuous duty and give in this case beam with the large

average/mean intensity.
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Upon the acceleration of ‘ons to the energies, which exceed 5
MeV, usually is utilized high~-frequency accelerating field, which
makes it possible to pass the particles through the large number of
accelerating gaps and, therefore, to restrict the maximum values of
stresses/voltages in the accelerator. High energy particles with the
given speed, which approaches unity, can be accelerated in the field
of the traveling wave. In the high-frequency field the beam |
decomposes into the clusters. The frequency of bunches couincides with
 the frequency of accelerating voltage. Therefore such accelerators

are called, according to the steady terminology, resonance.
Page 4.

In the linear resonance accelerators always can be isolated the
fundamental harmonic of the component of accelerating field, which is
spread in the direction of acceleration. As it will be shown,
precisely, this harmonic gives the basic contribution to the particle
acceleration. In traveling-waves accelerator is formed/shaped only
this harmonic. In the general case accelerating field contains wide
the spectrum of running harmonics; the fundamental harmonic, isolated

above, is called the equivalent traveling wave. Linear resonance

accelerators, from the point of view of particle dynamics in
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accelerating field, can be divided into the accelerators of two
types: in first type accelerators the phase speed of the equivalent
traveling wave is lower than the speed of light; in second type
accelerators the phase speed of the equivalent traveling wave is
equal to the speed of light. In the first case phase wave velocCity
monotonically grows/rises, and the longitudinal velocities of
particles vary relative to the instantaneous value/significance of
phase speed. The secondly longitudinal particle motion is threshold.
These differences in the particle motion determine many special

features/peculiarities of each type of accelerator (capture of

particles in acceleration mode, formation of clusters, etc.). First
type linear accelerators are utilized for accelerating the heavy

particles whose given speed remains substantially smaller unity up to

é the exit energy. The initial sections of the electron accelerator (in
which occurs the grouping and the preliminary dispersal/acceleration
of electrons) are also first type accelerators. However, due to a
small rest mass electrons acquire the speeds, which approach the
speed of light, even with the energy several mega-electron-volts, and
further acceleration of electrons is conducted in second type

accelerator.

With an increase in the energy of particles is facilitated the

beam focusing. This is connected, in the first place, with the

decrease of the angular scatter of the trajectories of the
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accelerated particles, and in the second place, with the decrease of
the Coulomb pushing apart of particles in the beam. It is natural
that questions of focusing prove to be most serious precisely during
the construction of first type linear accelerators, which leads to
the considerable complication of the theory of particle motion in

these accelerators.

Subsequently let us examine in essence first type linear
resonance accelerators, intended for accelerating the ions. However,
in the appropriate places will be completed transition to the maximum

permissible value/significance of phase speed vs =¢

One of the most important characteristics of beam of particles,

injected into the linear accelerator, is its phase volume.
Page 5.

Thé phase volume of beam is determined by the disordered scatter of
particles on the attitude and by speeds. In accordance with
Liouville'é theorem the phase volume is a value invariant.
Liouville's theorem is valid under specific conditions which with a

sufficient accuracy are always satisfied in the linear accelerators.

Any linear accelerator can take and accelerate beam of particles,

limited by certain finite quantity of phase volume. This value is
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determined by the capacity of this accelerator. In practice the phase
volumes of the beams, generated by d.fferent ion sources, prove to be
comparable in the value with the capacity of accelerazors or even
exceed it. Yhe fact indicated leads to the specific problems which
must be solved during the design of ionic sources and linear

accelerators.

Particle motion in the accelerating and focusing fields is
connected both with the action of the proper field of beam and with
the disordered scatter of thermal particle speed, the determined
phase volume of beam. 1f i4 is disregarded by both factors, it proves
to be sufficient to examine the motion of one particle in the
assigned applied fields. However, already accumulated experiment
design and operation of contemporary linear accelerators showed that
the factors indicated should be considered. If particle density in
the phase space of beam is sufficiently great, it is possible to
disregard the scatter of thermal particle speed. But if phase density
is small, and the phase volume, occupied with the particles of beam,

is relatively great, admissibly disregard/neglect the pushing apart

Coulomb forces. In many practically important cases it is necessary

to consider with the fact that effects of both factors mentioned
above are commensurated. Neglect of the space charge of beam or by
the scatter of thermal velocities can lead to the significant errors

during the calculation of the parameters of accelerator.
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An increase in the intensity of the accelerated beams in proton
synchrbtrons and respectively in the linear accelerators - injectors
- is at present one of the urgent problems of accelerative
technology. Therefore the problems of the acceleration of beams with
the high pulse intensity were especially intensely studied
experimentally and theoretically into the latter several years both

in the USSR and abroad.
Page 6.

Now already there are monographs with the systematized presentation
of questions of particle dynamics in linear resonance accelerators
{1-3], but the theory of intense beams, connected with the
simultaneous account of final phase volume and final beam current,
even on I could find a sufficient reflection. Goal of this book - to
a certain extent to complete a deficiency/lack in the literature on
the questions indicated. In the first two éhapters is examined
particle dynamics in the beams with the negligible current density.
The material of these Ehapters is constructed so as to first isolate

the basic questions with which we encounter in the examination of

beams with the essential space charge.
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In contrast to the cyclic ones in the linear particle
accelerators they are accelerated for a small time interval and
acquire high energy on the relatively short path. In view of the
short time of interaction of particie with the field in the linear
accelerator different resonance effects, which lead to the loss of
beam in the cyclic accelerators, have comparatively low
value/significance in the theory of linear accelerators. On the other
hand, due to the rapid set of energy in the linear accelerator
becomes very essential the effect of defocusing of particles by
accelerating field. These special features/peculiarities .ead to the
fact that the theory of particle motion in the cyclic accelerators
both in the examination of the beams of zero intensity and during the

analysis of the dynamics of intense beams.

The author hopes that the book will prove to be useful and to
specialists, who do not work in the area of accelerative technology,
but by the problems of the beam shaping of high intensity interesting

in other areas of technology.

The author expresses deep gratitude to D. G. Koshkarev and V. K.
Plotnikov for the valuable discussions, and also to B. 1. Bondaryev

and K. I. Guseva for the composition of the abstract of lectures,

placed as the basis of the book.
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Chapter 1.

Longitudinal vibrations of particles in beams with the negligible

density of space charge.

§1.1. Dynamics of the synchronous particle, which moves along the

axis of accelerator.

Let the charged particle beam be accelerated in the field of the

running simple harmonic wave with the longitudinal component

s

E. - Ecos w—\.kf:;d."“. tl..l,

Henceforth we will use the Cartesian coordinate system with z axis,
directed along the axis of linear accelerator. Phase wave velocity
ve we will consider the assigned monotonically increasing function of

the longitudinal coordinate 2:

w

R(2)=

tqpil S

Let us assume vy < ¢.Propagation of the traveling wave with the phase

speed, the lower speed of light/world, possibly, in particular, in

the wavequide, loaded with appropriate diaphragms [1, 4-6). Let us

e - r—nen
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isolate in the beam certain particle whose speed at each moment of
time coincides with phase wave velocity, which accompanies particle.
This particle, moving at the current point of wave with certain
fixed/recorded phase 4. it will test/experience the action of the

longitudinal force

F_- =¢F COSL

In the conformity with expression (1.3) phase ¢, is counted off from
the moment of time with which the field at the particular point
reaches maximum value/significance. Let us select for certainty e>0.
Since particle acceleration is determined by force f.. for each given
value cos¢, >0 it can be selected the amplitude of the traveling wave
E (z), which ensures the current equality to phase wave velocity and
longitudinal velocity of particle, in other words, that ensures the

retention/preservation/maintaining assigned phase ¢-

Page 8.

The particle whose speed coincides at each moment of time with phase
wave velocity, is called synchronous particle, and the fixed value of

phase ¢.— by synchronous phase.

It is obvious that in the extreme case of acceleration in the

traveling wave when v, =¢ there is no synchronous particle in the
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beam.

Let us examine the case of accelerating the beam of particles in
the field of standing waves. The high-frequency system of linear
accelerator with the standing waves consists of the consecutive
accelerating gaps and, therefore, it has almost periodic structure.
In the simplest case each period of structure contains one
accelerating gap. The parameters of the periods of the accelerating
structure monotonically are changed along the longitudinal axis of
accelerator. For the proton linear accelerators in the range of
energies from 10 to 100 MeV is predominantly utilized the
high-frequency system, for the first time used on the accelerator in
Berkeley [7]. This system is the hollow cylindrical cavity, loaded
with drift tubes. Particles are accelerated in the clearance between
drift tubes and are shielded from the field (to the period when field
it has opposite direction) in the channels, arranged/located within
the tubes. Fig. l.la, schematically depicts the period of the
acceleration of high-frequency system with drift tubes. L, — length
of the n period of acceleration, equal to the distance between the
middles of adjacent drift tubes; g,— length of the accelerating
clearance. The periods of some other accelerating systems are
schematically given in Fig. 1.1, b-e. The accelerating
device/equipment in Fig. 1.1b, consists of cylindrical

capacitor/condenser with two accelerating clearances, which adjoin
the grounded rings. Figq. 1.1}& d gives the diverse variants of the

use of the retarding spirals within metal tube [8].
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Fig. 1.1. Key: (1). drift half-tubes. (2). Cylindrical

capacitor/condenser. (3). Retarding spiral with grounded middle. (4).

Retarding spiral with grounded ends/leads. (5). Quarter-wave antenna.
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Page 9.

In Fig. 1l.le field in the accelerating clearance is formed/shaped
with the aid of the cavity gquarter-wave resonator. The accelerating |
devices/equipment, shown in Fig. 1l.,l1b, e,, until now, are utilized

only in the circular accelerators. All known at present electronic |
linear accelerators are the waveguides, loaded with disks [6, 9-11].
In the accelerating systems of contemporary proton accelerators are

commonly used drift tubes [12-17].

Questions of radio-frequency technology of linear resonance

accelerato - exceed the limits of the book. Therefore we will not

discuss comparative advantages and disadvantages those in different
accelerating structures, and also we will not examine new
developments in this. region. Some questions, which relate to the
accelerating devices/equipment technique, are briefly examined in
work [2] and in other given sources. Let us note that further
presentétion of the theory of particle motion in linear resonance
accelerators can be attributed with some unprincipled changes to any
accelerating structure. for the concreteness subsequently we will

have in mind the accelerating system with drift tubes.

The longitudinal component of high-frequency electrical field on

the axis of accelerating gap takes the form

E;(z, t)y=E4(z)coswr. (.4
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Here E,» — law of amplitude distribution of the longitudinal
component of the field of standing wave along the axis in the n
period of the accelerating structure. We will call particle in the
field of the standing wave of synchronous, if it {lies certain
fixed/recorded point of each period of structure with the same phase
of high-frequency field. This point is caliled the electrical center
of period [7]. Let -1, 22— coordinate of beginning and end/lead of
the n period of the accelerating structure. An energy gain of any
particle, which moves along the axis, at the length of period is
determined by the expression

AV =-W,—W,_=¢ ) Egtzycosw. (2)dz. T
where W - kinetic energy of :;e particle: W=(m-m,)c?. Will select
certain point z, within the period and will fix phase 4: with which
synchronous particle is»passed this point. Regarding the synchroﬁous
phase, value/significance ¥: is retained one and the same in the
electrical center of each period of the accelerating structure. Thé
distance between the electrical centers of the adjacent periods of
structure synchronous particle flies for the time, multiple to the
period of high-frequency field (with the cophasal supply of

accelerating gaps).

Page 10.
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For the synchronous particle we have

By S

ey = :

I

where <. — current longitudinal veloci:ty of synchronous particle.

After substituting egquality (l1.6) into expression (1.5), we will

obtain
o L 21 Jd3
AW, - ecosq, \ Egtaicos -\ b5 do—
;'; . :, § .
n ) < d
. : A S . -
—esing, 5 Egtzysin 5=\ md‘. (1.7

in-1 B
where M\ - wavelength of accelerating field in the free space; f -
given particle speed. The predominant effect of the
components/terms/addends in the right side of expression (1.7)
depends on the parity of function E.t« relative to point z,. If
function £,(z» 1is close to the even (which corresponds to the
accelerating devices/equipment in Fig. l.la, ﬁ, e), then predominates
the first term. But if function f£,(z 1is close to the odd (see Fig.
1.1 b, ?), then predominates the second term. Let us assume that the
basic contribution to an energy gain gives the first term. Then

expression (1.7) is conveniently represented in the form

in

AW, =ecosq,L, ZL ( E,12)d2T,
n .
where et

: 2 ¢ o4 . C2x vodn
} E,l:)cos-l— 5 -6; d: L} Eg(.'.)snn—.;-;\J F;d.
T ="Ln _ L —tgg, = - J . (1.8)
) Egl3)ds '\Eg(z)dz
Ln Ln
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The value, determined by expression (1.8), is called the factor of
transit time. This factor depends substantially on the geometry of
field in the accelerating gap and on the particle speed. As will be
shown subsequently, the dependence of the factor of transit time on
the value of synchronous phase, clearly entering in the second member
of expression (1.8), and implicitly concealed/latent also in the
first member, it is unessential and in the first approximation,

disappears.

Value
Eo=—— \ Eg2)dz (1.9)
f’l.—l
let us name/call middle field on the axis of accelerator. This value
is equal to the amplitude of the longitudinal component of

accelerating field, accelerating structure averaged on the period.

Taking into account designations (1.8), (1.9) we will obtain
simple expression for an energy gain of synchronous particle in the

period of the accelerating structure

AW, =eE T L, cos ¢,. (1.10)
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Simplicity of this expression is explained only by the fact that all
difficulties of calculating interaction of particle with the assigned
high-frequency field are transferred to the determination of the
factor of transit time. from initial expressions (1.4), (1.6) it
follows that the phase of field, in which the par+ticle falls
substances the electrical center of period, must be counted off from

the moment/torque of the maximum of field.

Let us name/call first approximation to a factor of transit time

value

B

-.}-ﬁ. i—" Jo. N

N
TU—E;L: \ E.cjcos
Ln

where p., is determined by the equality

By = & (Bay - Bu. (12
and Bn — given speed of synchronous particle at the end of the n
period of the accelerating structure. According to expression (1.11),
during the calculation of first approximation to a factor of transit
time for the field with the predominant even component (relative to
electrical center) the second term in expression (1.8) is
thrown/rejected, and particle speed in the period is assumed the
constant, equal to B If is assigned middle field on the axis, then
into equality (1.11) enters the first approximation to length of

period, determined by the expression

Ln, = kB, A (1.1:4)

L ™
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Value k is called the multiplicity of the period of acceleration,
With the cophasal supply of accelerating gaps value k determines the
number of periods of high~frequency field, for which synchronous
particle flies the distance between the electrical centers of the
adjacent periods of structure. Repeatedly were proposed different
high-frequency systems with the noncophasal supply of accelerating
gaps. noncophasal supply is possible, if accelerating gaps are
electrically untied, for example, if adjacent periods in the
resonator, loaded with drift tubes, are divided by continuous
metallic partitions/baffles. In the simplest of such systems
L.=L=const A similar system can be treated as system with the

variable/alternating multiplicity of the accelerating structure

L
k=55

or as system with the assigned multiplicity, but with a monotonically

decreasing equivalent wavelength of

L

)‘:mn = RBep

Page 12.

With the assigned multiplicity k the first approximation to a

factor of transit time can be represented in the form
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Ty gy  Ea(@reos TEdi= gt (1.14)

where 4. — amplitude of the k cosinusoidal harmonic of the
three-dimensional/space resolution by Fourier of high-frequency
field, Formula (1.14) is convenient, if field distribution of
standing wave in the accelerating gap they calculate, on the basis of

the appropriate boundary-value problem.

When the sizes/dimensions of the accelerating device/equipment
are small in comparison with the wavelength of high-frequency field,
it is convenient to utilize for calculating the factor of transit
time the semi-empirical method, based on the electrostatic
approximation/approach to goal {18]. In the electrostatic
approximation/approach potential distribution in accelerating gap
v(§), where §=2z-z,, it is possible to measure by simulation of
gap/interval with the aid of electrolytic bath. Since during
calculations of the factor of transit time are utilized the
experimental data, for decreasing the errors of calculation the
desirable curved of potential distribution not to differentiate; but
to integrate. Taking integral (1.11) in parts and taking into account

that Eq(@)d{ =dV., we obtain
Itk

2nk ¢ . -
To=(—1"+ Vil L)"V(;) sin 7~ ¢ dt, (1.15)
where V, - complete potential drop along the axis of accelerating

gap.

- —— e a e g e ——
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For calculating the parameters of the accelerating system it
suffices to utilize first approximations to factor of transit time
and length of the neriod of structure. Actually/really, it is
possible to show that the corrections of the second
approximation/approach in the middle Zieids in practice utilized in
the ionic linear accelerators prove to be negligible. These
corrections are caused by the inconstancy of the speed of synchronous
particle for the period of structure and by odd component of the
distribution of standing wave in the accelerating gap (in the systems
in Fig. 1.1, a, ¢, e). It is obvious that the position of electrical
center should be selected in such a way, as to maximally decrease odd
component of distribution (in the systems in Fig. l.l.a, ¢, e) or
even component (in the systems in Fig. b, c). In work [7] is examined
the selection of the position of electrical center for the
accelerating system with drift tubes. In this work it is proposed to
select the electrical center of each accelerating clearance z, in
such a way that the second member of expression (1.8) would become

zero

119

\ —z)sin =V K _ 4o
i\‘,.E'(Z 2) sin 3 }) 5D dz=0. (1.16)

Page 13.
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But the coordinate of electrical center during this determination o
must be calculated, moreover its position is changed with a change in
the synchronous phase. Since the allowances for the longitudinal
arrangement of drift tubes relate to the coordinates of electrical

centers, this definition, which formally simplifies the calculation

of corrections of second approximation/approach, in practice proves ‘
to be inconvenient. To it is simpler select the electrical center of
period in the geometric center of the accelerating clearance and to
treat the second member of expression (1.8) as the supplementary i
correction of the second approximation/approach. Both corrections
prove to be the values of one order. When the correction of the

second approximation/approach can be disregarded/neglected, the

geometric center of clearance coincides with the electrical center,

determined by equality (1.16). Analogous considerations occur, also,

during the selection of electrical centers in the accelerating |

systems of other types. In Fig. 1.1 electrical centers are noted by

asterisks.

Let us rate/estimate the corrections of the second
approximation/approach. The current particle speed in the period of

the accelerating structure can be represented by the series/row

‘ ﬂM=Nm+%VMwa%%§wm—mu“.nn> /

Rate of change in the longitudinal component of |
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impulse/momentum/pulse is determined by the expression

dp .
,,"’,; =eF (Zycoswl o).

Since

S = e

at My R

wnere Y=-—-——==-—Lorenz's factor,

]
2L
Ccoswl 12); A

=
& =mx*—~ rest energy of particle. The higher derivatives are
calculated by differentiation of expression (1.1$). With substitution
z=z, one should considervthat for synchronous particle W /'-+ =%  For
evaluating the corrections of the second approximation/approach let
us assume: L.: coust with 12-2,1<g/2 and E,=¢ with Jz~z,1>g/2. This
approximation of field in the accelerating gap is occasionally

referred to as square wave. After substituting series/row {(1.17) into

expression (1.8) and after producing integration, we will obtain

T_.-—_To\,l—é—xu/ , (1.20°
where T, is determine¢ by formula (1.11) and does not require the

approximation of field by square wave.
Page 14.

Low parameter X 1is assigned by the expression

_ neEq) sing,’ .

where B, ,-=8,(z,0— sSpeed of synchronous particle in the electrical




—_—
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center ’
' b {
Bu=Bep | = xa . (1.22) i
j
}
Value )
|
§
e= 123 -

is called <the coefficient 0f clearance

The length of the period of the accelerating structure, s:rictly

speaking, is determined by the equality

After using series/row (1.17), we will obtain

Ln=Lay |——yat . (1.24)

The corrections of the second approximation/approach can be

disregarded/neglected, if parameter x is sufficiently low.

One of the most important parameters of linear accelerator is
specific acceleration W,, equal to the relation of an energy gain of
synchronous particle at the length A to the rest energy. In the

fields of the standing waves

W, = -i%:.—l- COS ¢, (1.25)

in the field of the traveling wave

E)
Wi =g cos ¢.. (1.25a)
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Parameter X can be cxpressed through the specific acceleration

_ 2 ee 1.21a)
X = "TRIT [ (

Jdsualily T~ 1. tg¢, < 1. Thus, the smallness of parameter 1 1is provided,
1f specific acceleraticn is small in comparison with the
instantaneous value of the given particle speed. Specific
acceleration very is simply connected with a partial increase in the
impulse/momentum/pulse of synchronous particle in the period of <he
accelerating structure. If partial increases in the
impulse/momentum/pulse and energy are small, then, as it is easy to

show,

Substituting AWZ=!¥5LM we obtain
L7
o kW, (1.26)

Page 15.

Nonrelativistic approximation/approach formula (1.26) is reduced to

the form

AB, = kW, (1.27)
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The guantitative estimations, which base the possibility of the
deletion of the corrections of the second approximation/approach,

will be given in §i.4.

Given formulas (1.8), (1.10), (1.11), (1.14), (1.151 are
modified, if in field distribution £¢t:—:»  predominates odd
component. For the orientation let us give the approximazion formulas
for the factor of transit time and partial increase in energy in some
accelerating devices/equipment, represented in Fig. 1.l1. Synchronous
phase everywhere is counted off from the moment of time with which

the standing wave reaches amplitude value.

1. Drift tubes (see Fig. 1l.la),

T ! sin a
ad aa

B

I

AW =6l Teosyg.. (128

Iy~
where I, - modified Bessel function of zero-order; d - diameter of
aperture opening/aperture in drift tube; V, - amplitude value of

potential difference between drift tubes.

2. Cylindrical capacitor/condenser (see Fig. 1.1lb),

T 1 sin 3 sin al
=T7ad\ " aa pA

lo B,

A, = =2l Tsing .. (1.29)

where 4@ - inner diameter of capacitor/condenser; a - coefficient of

\

clearance between capacitor/condenser and each grounded ring; 1 -

T Tt g canag T MY
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distance between geometric centers of clearances; V, - amplitude
value of potential difference between capacitor/condenser and each of

grounded rings.

3. Retarding spiral with grounded middle (see Fig. l.ic).

Y
2

T=—Phecos 4 s A = DTy o
|- b
Pk

4. Retarding spiral with grounded ends/leads (see Fig. 1.1d).

2
= B cos U .2 ) ‘
T—l 72 e BA'AW-X" “c’ElTsm(L (1.31
UBr.

In formulas (1.30), (1.31) l - axial length of spiral; E - amplitude

of the longitudinal component of field in the antinode.

Page 16.

In conclusion let us examine one of the possible procedures of
calculation of the periods of high-frequency structure for the
accelerator with drift tubes. For the calculation initial is the
dependence of the factor of transit time on the instantaneous value
of the given speed of the synchronous particle T=T(g). This

dependence in the electrostatic approximation/approach is determined

by formula (1.15) and can be interpolated by the series/row of the
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discrete/digital values T with the appropriate smoothing of the
curve, passing through experimental points. Let Ly, 2e—-
instantaneous values of the flight time and coordinate of synchronous
particle. Then

d2
dzg= 1 .

where

o dW
Wo= az!- =eLE,cos ¢,T (B).

Since Wi=(m—myc* that

3
dW.: é’oﬂ(]__ﬂ‘l)-ﬁdﬁ

During the calculation let us assign the parameter

\ = eEpd
- ——50—&05%- (1.32)

of those connected with the specific acceleration with the equality

W= AT (B). (1.33)
Then
=t . BdB .
dz,=3 n—pn¥1T(h)
N S S
ate =X (—py*:T B

Let us introduce the new dimensionless variables

A
& =2 T= %1..

In these variable/alternating
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8 B
=y —®_ .y Bd B
—fpy¥2 tE ’
Bo 11—fB8%2 T B, 6 “—ﬂt)”T{ﬂ)

3 where B, - given speed of injection. 3y latte

parametric form is assigned dependence I.=/!%.

constructed graphically (Fig. 1.2) or writ:en

Let us divide the axis of abscissas into equa
Page 17.

To space At,=k\ corresponds An::k%?.i.e. tim
electrical centers of adjacent periods. The o
points determine the coordinates of the begin
the accelerating structure. The lengths of dr
from the assigned dependence a(f), which ensu

natural frequencies of all periods of structu

The periods of the accelerating structur

tubes can be calculated also consecutively/se

formulas (1.13), (1.11), (1.10). Since for ea
structure to us is known the inlet velocity

(1.11), (1.13) enters speed B.,. average/mean
latter must be calculated either by the methc
approximations or, is more rough, with the ai

equality

kA
P T (Bn-0).

brn g Bn-l 'T'

last integrals in the

which can be

of flight between the

linates of dividing

.ng of each n period of
it tubes are calculated
>s the equality of the

2.

and length of drift
ially, utilizing

1 following period of

4 while into formulas
1 the period then the
of successive

of the approximate

T e e e e N Y

o e—— e a—
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§1.2. Phase stability of particles. Capture of particles into
acceleration mode.

The particles, injected into first type linear resonance

I

accelerator, are seized into acceleration mode because of the process
of phase stability [19, 20]. The proce: ' of phase stability leads to
the fact that the particles, which satisfy -he specified initial
conditions, stably are grouped in the area of the synchronous phase
of high-frequency field. The remaining particles, which do not fall
into the stable region about the synchronous phase, on the average do
not extract energy in high-frequency field and retire from the game.
Therefore beam decomposes lengthwise to the clusters, which follow
after each other with the frequency of accelerating field. The
elementary picture of phase stability it is easy to explain based on
the example of particle acceleration in the traveling wave. In this
case the region; occupied with the accelerated particles, is located
about the synchronous phase on a decrease in the crest of wave (Fig.
1.3a). Actually/really, let us examine the particles, which move
sufficiently closely to the synchronous. If any particle has a speed,

the lower speed of synchronous particle, then it will lag behind the

synchronous and it will hit the region of the traveling wave with the

- . s o e s

- —

—
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increased strength of field. This particle will undergo acceleration,
which exceeds travelling-wave acceleration; therefore 1ts speed will

grow/rise relative to wave, until particle passes synchronous phase.
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Page 18.

Particle with the initial velocity of of higher than phase wave
velocity, will anticipate/lead synchronous particle and it will hit
the region of the traveling wave with the lowered/reduced strength of
field. The speed of this particle relative to phase wave velocity
will decrease, until particle falls behind the synchronous phase.
Thus, the particles, which fall into the accelerator in the
nonsynchronous phase of the traveling wave, but it is sufficiently
close to the synchronous phase, they prove to be in potential well
and complete longitudinal vibrations relative to synchronous phase.
In the average speed of nonsynchronous particles proves to be equal
monotonically growing phase wave velocity. Entire bunch of particles,
seized in the mode of acceleration in this period of high-frequency

field, will move with the speed, equal at each moment of the time of

L

B i U

T . e . v o_—
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phase wave velocity. As it will be shown subseguently, the
spread/scope of phase oscillations decreases with an increase in the

energy of particles.

Similar pattern occurs upon the particle acceleration in the
field of standing waves. Stable synchronous phase falls to the reriod
of the increase of field in the accelerating clearance (Fig. 1.3b).
The particle, which moves behind the synchronous, will obtain in the
accelerating clearance a larger partial increase in energy, than
synchronous, while the particle, which moves in front of the
synchronous, 1is smaller. The phase of the standing wave with which
the given particle, seized into acceleration mode, passes the
electrical centers of the consecutive clearances, will oscillate

around the synchronous phase.

The longitudinal vibrations of particles in the traveling wave
are described by the differential equations whose solutions determine
region of capture of particles in acceleration mode, and also
frequency and damping of oscillations/vibrations. In the linear
accelerators with the standing waves the longitudinal vibrations,
strictly speaking, are described not by differential equations, but
by difference equations. But if a change in the phase of the
flight/span of electrical center and a partial increase in energy in

each period of the accelerating structure is sufficiently small, then

U Ter el i e W i W

o me—. . qra—. ) St

. e et mmn e e —————
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finite increments can be replaced by differentials, which actually
reduces the goal to the particle acceleration in the equivalent
traveling wave. Quantitative estimations show that with usually

utilized in the linear ion accelerators middle fields this

replacement does not lead to the significant errors in calculations.
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2 FerL23 lomma

& Cmosea formg 8 32:0% (39

Fig. 1.3. Key: {(1). Traveling wave. (2). Standing wave in clearance.
Page 19.

For evaluating the permissible errors during the replacement of
difference equations of diffefential egquations let us compare
solutions of both systems of equations. This comparison it suffices
to conduct for the simplest case, disregarding relativistic
relationships/ratios and damping of longitudinal vibrations. A
difference in solutions of both systems of equations is greatest with

the low energies of particles.

Let us examine for concreteness the accelerating system with

drift tubes (Fig. 1.4). Let s v, — speed of synchronous and
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nonsynchronous particles respectively within n drift tube; %. — phase
of field, in which nonsynchronous particle flies the electrical
center of the accelerating clearance before n drift tube. Le: us
designate

Yo =4¢n—4,:
et t1ood)

Al
EN

For the particles, little which are deflected from the synchronous
particle, we have ¥» <1l g l. The raid of a phase difference in one
period of the accelerating structure is equal o

AYn =Ypot = $r = 0 (AMq— Alp,).
where ¢, Af,,— time of landing run of the nonsynchronous and
synchronous particles between the electrical centers of the n-th and

{n+l)-th clearances

2: T
Mpg=k =5 Atp=Sag 75

Hence

Ay, x —2kg,. (1.35)

On the other hand,

UnegUrst 0 Un—ina

Agn =gn1—Egn=

Unsg, 8 Ung

Let us place Una.,=t,  this equivalently, as it is possible to show,

to failure of the examination of the process of damping the

B e R U ety e
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longitudinal vibrations

Alng

A& .
Agﬂ = _(ng 7\??" —1

Repeating .inings/calculations of 51.1, for a partial energy gain of
nonsynchronous particle we will obtain the expression, analogous to
formula (1.10):

AW, =W, —W, =cE,L.T cosq, .
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Page 20.

AS was shown :in §1.., the factor of transit time T in the firs:
approximation, does not depend on the phase of particle. With an
accuracy to equality .,=u, value T is identicai for the synchronous
and nonsynchronous par+icles. In nonrelativistic
approximation/approach W, = {mﬁﬁ;whence
AW, = myua, Avay AW, = Moy, Ava,

and

Meu TCOSGnay

Agn="“‘._

] Dy :

Cnsg . COS G, R tns et

Substituting expression (1.27) into the latter/last equality and
introducing for the brevity a designation

m’=-—%m’f%ﬁii. (1.36)

ns

we have
Aga= ,—f’.,i,,vm- (1.37)
Equalities (1.35) and (1.37) are the equations of small longitudinal
vibrations in the first differences. Let us compose second difference
A¢,—A¢,,. Utilizing expressions (1.35), (1.37), we obtain the
following equation of longitudinal vibrations for
variable/alternating ¢,

Ay —AYp-y —miy, = 0. (1.38)
Before solving equation we reduce it to a differentilal

equation, replacing tihe finite lucrements vy differential
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n =23uatizn

whd

e w38+ n - number of periods of the
accelerating structure, passed with particle from the beginning of

accelerator. Since An=l,

y g0
. Yo —Y oy . T dn g2
M= RS e G WM = e =y

Equation (1.38) reduces to the differential equation
J°

e (1.39)
Let us examine the equation in finite differences (1.38). It
possible to rewrite in the form

Yauy—2%n — Yy — miy, =0.
Let us substitute in this equation the predicted solution in the
v.=2" Value A proves to be the square root equationr

A—(2—m>Ha~1=0.
Assuming/setting

2—m?=2cosup,
we obtain

A=cosp + Jcostp—1 =esin,
Page 21.

In the general case the solution of equation (1.38) takes the form
(arbitrary constants are omitted):

q-n = XNy,

Depending on value m? the parameter u can be real or complex.

e
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Thus, the solution of difference equation differs from the
solution of differential equation in terms of the frequency

m

I

m = 2sin
Frequencies of both solutions are approximately equal to (u™~m) with
m<<l. In the course of time the solutions diverge; they remain close
ones to each other on a time interval which is the larger, the less
the parameter m. Hence it is apparent that the condition of replacing
the difference equation to the differential equation coincides with
the condition under which it is possible to disregard the corrections
of the second approximation/approach to a factor of transit time and
to length of the period of the structure: specific acceleration must
be little in comparison with the given particle speed. Let at the
length of linear accelerator be placed nuwk. the periods of the
accelerating structure. Then toward the end of accelerator both
solutions are radiated on the phase to value A\Y = (u—m) fNyane. After
decomposing m in the power series on u and after being restricted to
the first nonvanishing approximation/approach, we will obtain

% ~ —;;—%r...“c. (1.40)

Let us examine a numerical example. In some proton linear
accelerators (I1-100, CERN, Brookhaven, etc.) it is accepted W,=
=2.7+10°%. Assuming/setting cosg,=0.8; B~02; k=1 we have
AY

-3;-=10“nnup Hence it is apparent that even at very high values ‘nuuc,

on the order of hundred, difference in both solutions in the ion

accelerators can be disregarded/neglected. Virtually matter is still
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happier, since at fixed value y, parameter m decreases with an
increase in the energy of particles. In the electron accelerators
specific acceleration usually proves to be very large in view of the
low value of rest energy of electrons. Therefore the replacement of
difference equations to the differential equations for the electrons

is virtually unacceptable.

Let us note that the solution of differential equation (1.39) is
always oscillator, if only ¢.<U. However, the solution of difference

equation at the high values of m can prove to be aperiodic.

Thus, the replacement of difference equations to the
differential equations is possible, if a number of periods of
hiéh-frequency structure, which fall for one period of longitudinal
vibrations N=2r/u, much more than unity; in other words, if a phase

difference vy little is changed in one period of structure.
Page 22.

Upon transfer from the finite increments to the derivatives we
replace the discrete/digital effect of the field of standing waves to
the particle by continuous effect. This continuous effect is reduced
to the particle acceleration in the equivalent traveling wave. The

sufficiently complete differential equations of longitudinal
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vibrations taking into account variable speed of synchronous particle
and relativistic relationships/ratios it is possible to obtain on an
example of equation (1.39), compiling an equation in the finite
differences and replacing further the final ones of increase by
derivatives. However, it is expedient to introduce into the
examination the equivalent traveling wave, which reduces to the same
differential equations, but by simpler and more graphic method. The
approximation of standing waves by the equivalent traveling wave is
valid under the same assumption about smallness W, 8. as transition

from the difference equations to the differential equations.

A change of the energy of arbitrary particle at any point of

field is determined by the equation

T=eEz 1), (1.41)

In expression (l1.41) is omitted the dependence of the longitudinal
component of field on the transverse coordinates. Here and
subsequently the longitudinal vibrations of particles will be
examined under the simplifying assumption that the amplitude of the
longitudinal component of field is constant in entire section of
aperture. This proposition it is made sufficiently well, if a radius
of aperture is small in comparison with value B\, since the

dependence of longitudinal ~omponent on ratio r/BA in the systems

with the axial symmetry is assigned by the modified Bessel function

of zero-order, that has very flat extremum in zero. Function E,(z. )
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is assigned by equality (1.4). Amplitude distribution of the
longitudinal component of standing wave can be represented in this
period of structure by Fourier series. As it was shown above, with an
accuracy to the corrections of the second approximation/approach, in
distribution £,(2) it suffices to consider in the dependence on the
construction/design of the accelerating element/cell only even or odd
part. We will be restricted to the case when function £,/ is
approximated by its even part {(relative to the electrical center of

period)

2am

LZ.

E;lz)= S Am cos

m=0

The instantaneous value/significance of the longitudinal component of

field takes the form

m=n

/ 2: °
E (2. t)= E B,,.cos\wt— 7_"' z . (1.42)

Ma=—

where B,=A,; B,=.14, with m#0.
Page 23.

Series/row (1.42) represents the sum of the running harmonics, which
are spread in the positive (m>0) and negative (m<0) directions.
Substituting series/row (1.42) into expression (1.5) and
assuming/setting in the first approximation, wt(z)=(wz/v)+e, for a

partial increase in energy of arbitrary particle in the period we

R ey gy o Samaryiaee— R eyt VO




DOC = 82105202 page M3

obtain the expression
W=e M Bmimsﬂ%4k—mu~q}d;
- _ b :
M= 1.

Since

., a)
\Cobt%(k—m)z*(;]dz:ll‘cosq npu m = &,
L N | o npi m==k,

Key: (1). with.

then

AW =eByL cosq.
Thus, in the first approximation, the contribution in the
acceleration gives only the one running harmonic of series/row
(1.42), which corresponds m=k and spreading in the direction of
particle motion. We will be restricted in series/row (1.42) to
harmonic m=k and will consider that the speed of synchronous
particle, which is determining value L, is variable/alternating along

the axis of accelerator, We will obtain

2z

E. (2, t)=Bgcosa)<t—S i—z>
- 0 ¢

Further, according to expression (1.14) By= 5: 4,=E,7. As a result we

obtain the following expression for the equivalent traveling wave

Uy

s (& 4
E,(z.t)=EoTcosm,\t—§ ) (1.43)

Let us form an equation of the longitudinal vibrations of

——— e e e




DOC = 82105202 pace WY

particles in the traveling wave. For the arbitrary particle

w
%7=e5c05¢. (144

where ¢ - instantaneous phase of traveling wave at the point in which

1s located the particle at moment/torgue t,

r/ i“- [ f -
qt=(.|)kt—\'u—‘v (LA

s

;

where E - amplitude of the traveling wave.
Page 24.

In the field of standing waves E=E,T. For the synchronous particle

i‘:—‘ =eF cOs @,. (1.40)
Let us select as the dynamic variable/alternating a phase difference
of the nonsynchronous and synchronous particles
Y=0—0, (1.47)

and a reciprocal difference in their energies

Pe=W, —W. (1.48)
Further calculations let us conduct in the approximation/approach,
with which it is unimportant, are taken these differences at one
point of space, or in a moment of time. Deducting equation (1.44)
from equation (1.46) and converting/transferring from the

differentiation with respect to the coordinate to the differentiation

with respect to time, we obtain
dp.
—di""E‘" [cos @, —cos (¥ + @,)]. (1.49)
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We differentiate equality (1.45):

dy v—uo, _
7 =—a Uy ‘ (1.403)

From the general/common/total relativistic relationships/ratios
s
D= mayu. ‘:‘Z—'- = :'{fOl lows

Av I Ap ,
—y .—: AW=xv .
Us yd o op, . 3P
or
i RPN B D—r, fa's -
U, ~ Yz Psta + 'R -~ Dats . (1.30)
Hence
d -
DL p,. (1.51)
de Y4Psls

Equations (1.49), (1.51) are the system of two.first-order equations,

which describes the longitudinal vibrations of particles in the

equivalent traveling wave. These equations can be written in the form

dp _OH . ey oM B}
“at—‘—m- T T oy (1.52)
where '

H (b, pes t)=—Qﬁ;‘—u‘—p’,—.—eEv.[sin(\r+¢,)—¢cos¢.]. (1.53)
Page 25.

this form of writing of equations of motion -
canonical-conjugated/combined. Function H from
canonical-conjugated/combined variable/aliernating and time -
Hamiltonian of particle. Thus, variable/alternating p, 1is the

generalized momentum, canonical-conjugated/combined with the

As is known, the equations of motion, written in the form (1.52), are

called canonical, and the variable/alternating, in which is possible

S L e e A YN S\ g o
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generalized coordinate of motion y¥. The special importance of the
examination of motion in canonical-conjugated/combined
variable/alternating is connected with existence two fundamental of
the theorems of mechanics. It is expedient to brieflyv resemble
content and value/significance of these theorems. It is in detail to

the Hamiltonian mechanics it is pessible to be introduced,

rh

or

example, according to book [21].

During the analysis of motion of particles it is convenient to
utilize a concept of phase space. Let the particle have n degrees of
freedom. In the general case of motion in the three-dimensional space
a number of degrees of freedom is equal to three. The state of
particle at any moment of time is determined by the values 2n of the
variable/alternating from which n of variable/alternating determine
the position of particle in the space (generalized coordinates

di. -... g). and other n variables characterize the speed of mot{on by
each degree of freedom (generalized momenta p, ... ps). At each moment
of the time of the state of the given particle it is possible to
determine by the position of the representative point in 2
n-dimensional coordinate systems. Along the axes of coordinate system
plot/deposit the values of generalized coordinates and particle
momenta at the given instant. This 2n-dimensional coordinate system
is called phase space. To a change of the state of particle in the

time in accordance with the equations of motion corresponds the

e Tt o 5 57 o A i A P GE =

g
i
|




DOC = 82105202 pace U7

displacement of the representative point in the phase space. The path
of the representative point is called phase particle trajectory (see
[22-24]). To periodic processes correspond locked phase trajectories.
Most clearly appears phase space for the single degree-of-freedom
particle, i.e., for the particle motion by which is described by two
differential first-order equations. In this case phase space
degenerates into the phase plane. As it 1s easy to show, to harmonic
motion corresponds phase-plane ellipse. I1f we have a beam of
particles, then the representative points of beam can fill in the
phase space certain different from zero volumes, called the phase
volume of beam. The presence of the final phase volume of beam is a
consequence of the statistical scattering of initial conditions,
connected usually with the disordered thermal particle motion. A
number of representative points in the unit of phase volume is called
phase particle density. Let in the element/cell of the phase volume
dV =dg,, .... dg,dp,. .... dp,
be located dN the representative points; phase particle density is

equal to

hY
R(@us «oov Gry Piv < s Pns t):‘;‘-r_

Page 26.

I1f particle motion is described by system of 2n the first-order

equations, then in the general case there is 2n-1 constants of

motion. The interval of motion is the function of dynamic

———— i o i
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variable/alternating and time, that remains constant with the
particle motion .in accordance with the assigned equations, in other

words, in the remaining constant value in this phase trajectory.

The first of the theorems mentioned above asserts that the
Hamiltonian, which does not depend clearly on the time, 1is constant

of motion: dH oM

ar T or
The Hamiltonian of particle - this is total energy of motion (kinetic
plus potential), expressed through canonical-conjugated/combined
variable/alternating. Therefore this theorem essentially expresses
the law of conservation of energy in the isolated/insulated system.
The dyrnamic system whose Hamiltonian does not depend clearly on time,

is called conservative.

The second theorem (Liouville's theorem): the phase volume of
the collective of the particles, which move in accordance with the
equations of motion, in the space of canonical-conjugated/combined
variable/alternating it is invariant value. The phase volume of beam
can be deformed, but by any force fields cannot glow to zero phase
volume of finite quantity. It is important to note that in the case
when the vector potential of electromagnetic field is equal to zero

at all points of configuration space, the Cartesian coordinates x, vy,

z and impulses/momenta/pulses p: =mx, p, = my, p. = mz

o m—— o e
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canonical-conjugated/combined. As the corollary of Liouville, any
decrease of the scatter of particles on the coordinates (compression
of beam) is accompanied by an increase in the scatter in the
impulses/momenta/pulses, and vice versa, the expansion of beam causes
the decrease of the scatter of particles on the

impulses/momenta/pulses.

Let us examine certain limited phase volume around the
representative point, wnich moves along the phase trajectory. Initial
:ohditions uniquely determine phase trajectory, so that the phase
trajectories of different particles at the regular points of phase
space do not intersect. Hence it follows that not one representative
point can cross the boundary of the chosen phase volume. A number of
representative points in the element/cell of phase volume is kept
constant. From Liouville's theorem it follows that the phase particle
density in the space of canonical-conjugated/combined

variable/alternating is constant along the phase trajectory.

Canonical-conjugated/combined variable/alternating it is
possible to introduce only for the dynamic systems, in which are
absent dispersive forces. Therefore Liouville's theorem is valid only
in the absence of dispersive forces. In the general case dispersive

forces are called the forces, which depend on the projection of

particle speed on line of force [77]. These forces appear, in
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particular, in the presence of friction, energy losses to the

radiation/emission or during the collisions of particles.
Page 27.

Dispersive forces are absent in the potential fields where the force
not at all depends on speed. The Lorentz force, velocity-dependent of
particles, also is not dispersive, since the direction of the action
of this force is perpendicular to speed. In the linear accelerators

usually it is possible to disregard all sources of dispersive forces.

Let us return to the equations of longitudinal vibrations. The
Hamiltonian of particle (1.53) depends clearly on time, since
parameters p. ., are the assigned functions of time. However, let us
assume that parameters p, v, are changed sufficiently slowly, so that
for the time of a substantial change in variable/alternating V. p.
these parameters remain almost constant. This change in the
parameters is called adiabatic. With an adiabatic change in the
parameters is changed the type of phase trajectories, but it is
possible to show [21] that the area, included on the plane by the
locked phase trajectory, in this case is not changed. The values,
which remain constants with an adiabatic change in the parameters,
are called adiabatic invariants. The area, included by the locked

phase trajectory, is one of the adiabatic invariants. The invariance
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of area - this is one of the corollaries of Liouville, since the
locked trajectory can be represented as the boundary of the phase

volume of certain collective of single degree~of-freedom particles.

A question about the capture of particles into acceleration mode
can be examined in conservative approximation/approach ? ~ 0 [28]).
Subsequently let us show that the explicit dependence of Hamiltonian
on the time leads to damping of longitudinal vibrations. Therefore
calculation of capture in the conservative approximation/approach
knowingly gives supply according to a number cf seized particles.
Second term of Hamiltonian (1.53)
V() =eEv, [sin (¢ — ¢,) — ¥ COS ¢, RRVY
is the analog of potential energy. In the conservative
approximation/approach the Hamiltonian is integral of motion;
therefore equation (1.53) is the equation of phase trajectory. To
each phase trajectory corresponds the specific value/significance H:
o=ty Y 2EVA=V . (1.55)
Expression (1.55) gives the simple method of the construction of the
family of phase trajectories (23, 24]. Let us construct on plane
¥. vV potential function .V (y) (Fig. 1.5). The relief of potential
function is determined by the sum of sinusoid sin(y — ¢,), ©of out of
phase relative to zero, and straight line —vcos¢, Let us conduct

on plane %,V horizontal line V=H., Actual values P+ occur only when

V)< H and for each value/significance ¥ they are determined by
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root of the current difference H-V.

Page 28.

To values/significance H,, at which horizontal line V=H, concerns

potential function at the point of the minimum, corresponds the

isolateds/insulated singular point on plane V.p.. This singular point !
is called center. In the nearest vicinity of center phase
trajectories are locked. The direction of the motion of the
representative points (see Fig. 1.5) is obtained from the condition:
§¥;>b when py,>0 (1.51'. With increase in H the framework of the

locked phase trajectories grows/rises. Let when H# = 4. the horizontal

line concern curve V") at the point of maximum. To *his

value/significance of Hamiltonian corresponds the special phase f
trajectory, which has the point of self-intersection on the axis of

abscissas. The coordinate of the point of self-intersection is an

abscissa of maximum V (¢); the indicated point is also the singular

point of equations of motion (saddle). The phase trajectory, passing

through the saddle, is called separatrix. Separatrix divides two

regions of phase plane with different character of phase

trajectories. Within the separatrix phase trajectories are locked,

out of the separatrix extended.
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. Fig. 1.5.

Page 29.

Let us note that as a whole the family of phase trajectories on plane
¥, pe corresponds to the possible motions of the ball/sphere, whic¢h
wvheels without friction along the relief, assigned by potential
function. Center % =0,p,=0 corresponds to the synchronous
particle: ¢ =%, =constt W =W, (2. Phase and energy of the particles,
which caught upon the injection inside the separatrix, complete

oscillations/vibrations around the synchronous phase and the current

Tl e M o ey e e
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eriergy of synchronous particle. These particles are accelerated.
Energy of the particles, which proved to be out of the separatrix,
decreases relatively W, ;) It is obvious that such particles are not
seized into acceleration mode. Thus in the conservative
approximation/approach separatrix limits the capture region of
particles into acceleration mode. Thus in the conservative
approximation/approach separatrix limits the capture region of

particles into acceleration mode.

The coordinates of the extrema of potential function are

determined by the condition

1% , -
%;:eE:’,{cos(w-—-«;,)—cosq.)|=O. i 1.0,

Equation (1.56) in the period in question has two roots: y=0 and

Ye= —2¢,. The second derivative at the points of extrema is equal to
d2v . d2v
d—W(O)=—eEv,Sln¢,: Wz(—qu:eE("S]‘nq“

The chosen value/significance of synchronous phase is stable, if the
second derivative in zero is positive. To this corresponds condition
sing, <0. Then the second state of equilibrium ¥Yc=-—2, (or ¢=—9.) is

unstably and saddle.

According to expression (1.55), the separatrix is described by

the equation

Pe=+vY /3"% VV(—2g)—=1(¥). (1.57)

In the practical calculations of basic interest is a relative
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difference in the impulses/momenta/pulses

g= P;%_, (1.58)

Utilizing relationship/ratio (1.50) and expression (1.54), we obtain

the equation of separatrix in coordinates y. g:

-
gl ==y V (‘f‘% V Ay —siny—24,) cos g, — {1 —cosy)sing.,.
(1.53%

Page 30.

The semirange of separatrix along the axis g is equal to

Guare = 2y V/ ‘L-';‘ | 4. CO8 G — Sif . (1.60)
Coordinate ¥+ of the second point of intersection of separatrix with
the axis of abscissas let us find from the equation

V(‘rh') =V(—2ﬁh)~
Substituting into this equation expression (1.54) and expanding
trigonometric functions from ¢, y in the power series, we obtain
- 1
L AT L (1.61)

With an accuracy sufficient for practical purposes it is possible to

accept ¥.=¢, Fig. 1.6 gives separatrix in coordinates V. g

With expressions (1.59), (1.60) more conveniently to operate,
after introducing in them the value of specific acceleration ¥,

Substituting expression (1.25a) into equalities (1.59), (1.60), we

have
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r <V T—cos ¢ —(§ —sinyg — 2¢,) clg Ga

{1.39a)
e/ T .
Guae =2} y=- Vl——t?‘;—‘. (1.60a)

where
_ W, w6, -
S.,.—U)V'—ﬁ.:l—g.—— . (102)
Let us tentatively rate/estimate value gu.. Let
Wi=27-10% «cosy. O3:p-0.038(it corresponds tc energy of injection
W,=700 keV). Then - =U0.094 and guaxe =7.3%.

1f upon the injection it is possible to completely fill capture
region (see Fig. 1.6), then clusters subsequent.y do not fluctuate;
the longitudinal length of clusters monotonically increases according
to the law

‘_\z=31cp.':;—’ .

But if into the accelerator is injected monochromatic beam with the

scatter of impulses/momenta/pulses, substantially smaller than the
spread/scope of separatrix (Fig. 1.7), then clusters upon the
acceleration fluctuate along the length: the region, occupied.with
the representative points of beam, rotates within the separatrix with
the frequency of longitudinal vibrations. The equations of
longitudinal vibrations are nonlinear. Therefore frequency depends on

the amplitude: with an increase in the amplitude the frequency of
longitudinal vibrations decreases.

it B Y = o e o
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Fig. 1.6
Page 31.

This causes the distortion of phase volume, schematically shown in

Fig. 1.7.

The calculation of capture region taking into account the
explicit dependence of Hamiltonian on the time can be carried out
numerically {26]). The qualitative picture of the distribution of
phase trajectories for this case is shown in Fig. 1.8. As already
mentioned, when 'gh=o the phase oscillations attenuate. Therefore the
family of phase trajectories in Pig. 1.8 corresponds to the possible
motions of the ball/sphere, which wheels along the potential relief,
but in the presence of friction. Capture region in Fig. 1.8 is
shaded. It proves to be open-circuited. Calculation shows that in the
virtually acceptable initial parameters of ionic accelerator
(WE.,Q|> the capture region on the phases at the level g=0 proves

N @
to be approximately/exemplarily to 10o/0 wider than the region,
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designed in the conservative approximation/approach. The maximum
width of capture regicn on the phases occurs with Ag=+2-40/0 and is
approximately/exemplarily to 20-30o/o more than 3 ,  These
differences in the conservative and dissipative
approximations/approaches can have certain value/significance upon

the injection of monochromatic beam.

For evaluating the accuracy of differential equations Fig. 1.9

gives the separatrix of difference equation.
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Separatrix is obtained from the difference equations of numerical
calculation in the conservative approximation/approach when

cos @, = 08; Q/®=0.094. Phase ¢ — in the clearance, which follows
after drift tube where is measured value/significance g. In Fig. 1.9
where the comparison dotted line showed the separatrix, obtained from
the differential equations at the same values of the parameters.

Difference in both separatrices is virtually unessential.

e - ——




DOC = 82105202 PAGE 60

Let us examine the now limiting case of particle acceleratiocn in
the traveling wave with the phase speed, equal to the speed of light.
In this wave synchronous particle is absent, since for any material
particle with a finite mass of rest of v<c. Rate of change in the
impulse/momentum/pulse of any particle is equal to

‘1—‘;=eEcos¢.
where o - instantaneous phase of wave at the point in which is
located the particle at the moment of time t
=t —=, (1.63)
Let us introduce for the simplification the given particle momentum
Po= mz
and the specific particle acceleration in the antinode of the
traveling wave, determined by the equality
W;=%. (1.64)
This value differs ffbm W, upon the acceleration in the wave where
vy<<c [see equation (1.25)]. Differentiating expression (1.63) and
taking into account that

Pe
Vi+re

o
—_—=
c

’

we obtain the following equations of motion of particle in the field

of the traveling wave with a phase speed of yy=c:

dt Vi+re
‘%’=mlhcosq>. (1.65)
Hence
dpe __tcose (1.66)
do W" = Pe
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Page 33.

v —— c————

Integrating expression (1.66), we obtain the family of the phase i

trajectories

lr,ﬁé'-l—-p,=C—W'15m ¢,
where C - arbitrary integration constant. The equation of the family

of phase trajectories is convenient to represent in the parametric

form, after introducing auxiliary variable/alternating

$(0s) =V pe—1—paq,

positive at all actual values of impulse/momentum/pulse. Then

Pe = —=: (1.67)

gt

§= C—W;_ sin g.

The dependence of the parameter { on the phase o is given in Figq.
1.10. For curves 1, 2 (see Fig. 1.10) C>W,; for curved 3 C-y,. for
curved 4, 5 C<W, It is easy to see that to passage to the limi+
Pe —x it corresponds {-»0. Consequently, into acceleration mode are
seized particles with the initial conditions under which C<W,. When

C>W, the particle momentum always remains finite cuantity. The

boundary of the region of capture corresponds C=Ww, or {=W,(l —sing).

Phase trajectories on plane ., are given in Fig. 1.11. The

direction of the motion of the representative points is selected from

condition %?;>o with cose>0, according to equation (1.65). The
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boundary of the region of capture is isolated with heavy line. The
maximum values of impulses/momenta/pulses for the particles, not
seized into acceleration mode, fall to the points o=n/2+-27n. The
impulses/momenta/pulses of these particles periodically are changed
about the constant value, and particles monotonically lag on the

phase behind the traveling wave, converting/transferring from one

period to another,
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Fig. 1.10.

Page 34.

The phase trajectories, which lie higher than boundary curve,
correspond to the particles, seized into acceleration mode. In the
course of time the speed of the seized particles always begins to
grow/rise. Each particle is seized by the specific period of the
traveling wave; particle remains from the wave, but its phase,
according to expression (1.67), it asimptotically tends for the
value/significance

P= = Arc sin ;'% .
Phase oscillations when uv,=c are absent. The minimum
value/significance of impulse/momentum/pulse for the particles, which

initially caught into the negative half-period of wave, falls to the

point e¢=-n/2. The clusters of the accelerated particles are collected

in each period of the traveling wave in the region from ¢=-7/2 to
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¢=0. The boundary of the region of capture is described by the

equation
_1—=Wi(—sin g

P, = TIW, (I —~in q)

11.68)

The value/significance of the given impulse/momentum/pulse minimally

permissible for the capture is equal

| —4W3 .
Po uun=—4—wr{— - 1 1.69)

Let the amplitude cf the traveling wave be equal to 30 kV/cm and

A=10 cm. Then the value of specific acceleration for the electrons

proves to be equal to W, =0,1, and for protons W, =3.]0%
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Fig. 1.11.

Page 35.

Hence it is apparent that the electrons are seized by the traveling

wave, which has phase speed :, <« already with energies on the order
of 1 MeV, and protons - only with the energies, which exceed 10° Gev.
Thus, in the traveling wave with a phase speed of ¢, =¢ wvirtually it

is possible to accelerate only electron beams.

§1.3. Small longitudinal vibrations.

Particles, close ones upon the injection to the synchronous
ones, vary on the phase with a small spread/scope, their behavior can
be described by the linearized equations., The investigation of the

linearized equations makes it possible sufficient simply to calculate

R S P e e
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DOC = 82105202 PAGE éé

fading and phase change of longitudinal vibrations at the length of
accelerator, which is important from the point of view of the
estimation of energy spectrum of the accelerated particles. The
estimation of certain allowances for the production of the
accelerating system also is reduced to the analysis of solutions in

the linear approximation/approach.

Let ¥ | Decomposing/expanding the right side of equation
(1.49) in the series/row according to degrees ¥ and being limited to

linear term, we have
u'ﬁu.

- =eErgsing oy

According to expressions (1.25), (1.62),
—eEsinq,:S;‘Q:. 1.Tm

As a result we obtain the following system of equations of

first-order, which describes the small oscillations
v ___w

dt = i, P
dpy ©P,U, S QN2 .
Tf:ﬁ_\“—.‘\ﬁ/ ¥, (1.71)

System (1.71) is reduced to one equation of the second order

‘j%"+ 4% (Iny*pu,) d}f +y2Qiy = 0. (1.72)
The coefficient of equation (1.72) they depend on the current energy
of synchronous particle and, according to the condition, they are the
"slow" functions of time. Let us switch over to the dimensionless

independent variable, which will make it possible to conduct a

comparative evaluation of coefficients. Let us assume r=wt. Then

e
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a a9 A -
a—r—zm%(r)ﬁ Iv(t)* ¢ =0, 11.73)
where
= .4 g o NI 4 3
dri=, - oyl = 3 o clog,, LT H
\(T\:\A”r’% 173
Page 36.

Let us note that when W, =const

3y2—p | oo -
3=l L v‘('r)_—.rz.-—-g—g-ﬂ-. (1.76)

Actually/really, from relationship/ratio (1.26) with an accuracy to

the replacement of finite increments by derivatives we have

1 dp, @
mec dl oA W
Hence

or, taking into account expression (1.62),

11 7Q\2
Substituting latter/last expression into equality (1.74), (1.75), we
obtain equalities (1.76). Functions 6(r), v2(x) are hyperbolas; they
are slow functions r with r>>1. Thus, the smallness of relation V2

guarantees the slowness of the coefficients of equation (1.73).

Let us represent the solution of equation (1.73) in the form

V(1) =@ (1)sin ¥ (1). (1.78)
Let us now substitute solution (1.78) in equation (1.73) and will

- e —— e P
e R T T R i g e e T e e e
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gather coefficients when sipn¥ and cos¥:

44, dD a_/d¥N2Y o
&;-2**—26(1_1_“0[_\ _‘_E,’l —]—-0. (1 .'9)
dY . 4O . 42y o

dY _dt —~60 ' - D - =0.

dr2

Due to the "slowness” of the coefficients of equation (1.73) we have

2

D~e-8~1 Since §~1/7, then ®-$p 6‘v£§, Disregarding in first

equation (1.79) the members of order 1/7° in comparison with o |

we obtain
4y
&=V (1.80)
Finally, disregarding in the second equation term Wd®—r-i: in

comparison with terms ¥, ¥~:-%:, we obtain the equation

! dv

5.(1—(':—6(1'—2—\7{-).4‘1. (].8])
Page 37.
From eqgualities (1.75), (1.80) it follows
3
%?:Qcy 2.
Thus, value
i
Q= y~%2Q, (1.82)

is an instantaneous value/significance of the frequency of small
longitudinal vibrations. Parameter Q. determined by expression
(1.62), is nonrelativistic approximation/approach to frequency of
small longitudinal vibrations. Phase change of oscillations at the

length of accelerator is equal to
t

AW (1) = \ Qt) dt. (1.83)

te
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Fading the amplitude of phase oscillations for different
functions Wi(z2) can be obtained by the integration of equation
(1.81). However, to more simply determine fading, on the basis of the
adiabatic invariant. Let us limit ourselves in potential function
{1.54) to the first nonvanishing approximation/approach of y

V()= —eEv,sing, Lyl (1.84)
Substituting expression (1.84) in the equation of phase trajectory
(1.55) and taking into account equality (1.70), we obtain the phase
trajectory of small longitudinal vibrations in the form
*zvf% . (1.85)

moreover

PW =Y2P3U5 %(D
Phase trajectory (1.85)is ellipse, which will agree with the harmonic
character of solution (1.78). The area, included by this ellipse,

’. = non,
is constant in accordance with the theorem about the adiabatic

invariant. Hence

D= const .
Q 1
Vv’p Vg —
T {1.36)

Py = const ]/y*p.v. —f} .

Page 38.

The amplitude of the oscillations of a relative difference in the

impulses/momenta/pulses
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= (PP}
ga - Ps /}Maxc *
according tu expression (1.50), is egual to
=2 (1.87)
ga PsUs

and it is changed with an increase in the energy of particles

according to the law

T
&a = const l/ﬁ-—w—. (1.88)

First let us examine damping small oscillations in the general
relativistic case upon the uniform acceleration along axis
(Wi =const). According to expressions (1.62), (1.82), the instantanecus
values of frequencies decrease with an increase in the energy as .
follows 0
=yt e yiprte (1.89)
Since - p,o, ='y'pi, that

Q== pr*sy, Pe==pls ga=vyp7° e (1.90)
The amplitude ot 3mali oscillations of pa;;icles along longitudinal
axis Zf4-= ¢ =+ and absolute difference in impulses/momenta/pulses
p—p. are proportional to values
z2—z,==y'ple;  p—p,==vyp7le (1.91)

From relationships/ratios (1.90), (1.91) it is evident that the phase
volume of the particles, which accomplish small oscillations, in
coordinates ¥ Py and z2—2. p—p, is retained. These pairs of dynamic

variable/alternating are canonical-conjugated/combined. Coordinates

¢, ¢ are not canonical-conjugated/combined; phase volume on plane
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¥, ¢ with an increase in the impulse/momentum/pulse is decreased,
moreover they decrease both the spread/scope of phase oscillations
and the range of oscillations of a relative difference in the

impulses/momenta/pulses.

Let us note that the current spread/scope of separatrix (1.é60a)
decreases according to the law
Graxe == Y71 (1.92)
Thus, the amplitude of the oscillations of a relative difference in
the impulses/momenta/pulses falls more rapidly than the spread/scope

of separatrix.

For evaluating the course g. and pr—p, with the high energies of
formula (1.90), (1.91) it is convenient to represent in the form
8a= VTI4pTH p—p, =yt (1.93)
A relative difference in the impulses/momenta/pulses decreases up to
B=1. But absolute difference at the high speeds is begun to

grow/rise; the minimum is necessary at the value/significance y*=4/3.
Page 39.

In the nonrelativistic approximation/approach formulas

(1.89)-(1.91) are reduced to the form;

Qe . w-ta . WY, =Wt
° ~_—W. . (n O WI ’ gﬂ g » (194)

1 . r-l
2~z,=W,% v—uv,==W0"
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(W,— kinetic energy of synchronous particle).

The course of the oscillations of phase depending on current

time ¢==} W, is given in Fig. 1.12. Damping longitudinal vibrations

is very considerable. Thus, under the ideal conditions upon the

particle acceleration from the energy of injection W,=700 keV to the

final energy W=24 MeV the amplitude of phase oscillations decreases

almost 4 times, and the amplitude of the oscillations of a

relative

difference in the impulses/momenta/pulses - 9 times. In this case the

spread/scope of separatrix along vertical axis (g..) decreases from

the beginning toward the end of the accelerator 2.4 times.

Are of practical interest the cases when acceleration
axis of accelerator is variable [27]:

AW, AW, W m
az & o\,

(1.93)
Index 0 relates to the initial values of values. A similar
accelerating system can be specially designed for assigned

it will correspond the equivalent traveling wave with the

along the

m, and to

monotonically changing acceleration of the wave front and the

respectively changing amplitude, which ensures the

retention/preservation/maintaining synchronous phase. Let us note

that the accelerator with drift tubes, designed for the constant




B DOC = 82105202 pace T%

value of middle field, has acceleration variable along the axis, if

the factor of transit time is changed along the axis [see expression

(1.33) 1.
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Page 40.

With the cophasal supply of accelerating gaps, according to

expression (1.95), we have

But if accelerating gaps are supplied noncophasally, for example, all
periods of structure have constant length L =#kBispp =const, then
Ao =W;¥* and W, =Wr 't Let us examine the case A=const in the

nonrelativistic approximation/approach. Since

e QM
O-_—(;‘/ v! y

then
342m 5-2m

O=W, °; g.=W, ° . (1.96)

In comparison with case of m=0 the phase oscillations with m<0
attenuate more weakly, and.the oscillations of a relative difference
in the impulses/momenta/pulses are more rapid. The osciliations of
phase are stable, thus far m>-3/2. Therefore a maximally attainable

fading of the scatter of impulses/momenta/pulses g,= W;' With m>0

oscillation of phase they attenuate more rapidly, but more slowly
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attenuate the oscillations of impulses/momenta/pulses.

Upon the injection of monochromatic beam the scatter of
particles on the impulses/momenta/pulses at the output of acceleraor
proves to be minimum, if at the length of accelerator is placed the
integer of half-waves of the longitudinal vibrations (see Fig. 1.7).
Therefore the calculation of the phase change of longitudinal
vibrations ¥ and the explanation of its dependence on the basic
parameters of accelerator for the establishment of the corresponding
allowances is essential. Let us examine, first of all, the most
important case when the acceleration of synchronous particle along
the axis is constant. Phase change of longitudinal vibrations is
determined by integral (1.83). According to expressions (1.62),

(1.82),

! Q=0 ‘/Wx €@, |
2a

vy yi—1

vhere v - Lorenz's factor for the synchronous particle. Further,

differentiating equality (1.77), we obtain

=2, _ydy
dt—mW; Vyi—i°

In expression (1.83) let us replace the variable/alternating of

integration. Then

Y
‘ SEEITT YT -
AY = ‘/——‘ w%‘“ \ (vt =—1)"" dy.
{ ]

v
Y
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Page 41.

Let us introduce for the convenience phase y calculated off the

conditional moment of time, which corresponds y=1,

Y
¥=x\ (y*—1)~" ‘dy. (1.97

{

—_ 2a Ig‘}! ‘1 (’8‘
x = ‘/ W [l

where

will eat phase factor for the longitudinal vibrations. Phase change
at the length of accelerator with the initial value of Lorenz's
factor y=4, and finite value Y=y« 1is equal to

AV =V (yx) — ¥ (vor.

By the second replacement of the variable/alternating
=yl |

integral (1.97) is led to tabular function (28]

x
¢ dx / 1N
‘F=2x\ —==xF{ Q. =% )
g Vi+x NI (1.99:.
tg%=}"’-va'—lv

where F(o, k) - the incomplete elliptical integral of the 1st kind:

da
y 1—#%sin®a

F(p, k)=

S @

The tables of function F(¢, k) are given, for example, in book [29].

it s S aare ra bt
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In the nonrelativistic approximation/apprcach ¢<<1 and Fle,
k)=¢. Hence

AY =xig —qa.

For the variable/alternating ¢ we have

a2 Bo¥ i s
N 9 7’

Thus, with the nonrelativistic ones the energy

= 0% CoW e Wy 17
MW= (g T s,

B ILA
Expression (1.100) can be also represented in the form

AP =2x (] B—1 Ba). V1100

Let us note .that the instantaneous frequency of phase oscillations
(1.62), (1.82) is proportional to square root of specific

acceleration, while phase factor (1.98) is inversely proportional to

this root.

Page 42.

Therefore with an increase in the specific acceleration the frequency

of longitudinal vibrations increases, and phase change between the
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given values »~f initial and final energies decreases. This at first
glance strange fact is connected with the fact that with the growth
of specific acceleration decreases time of landing run of the

particle between the assigned energies, so that in spite of an

[

ncrease :in the frequency phase change decreases.

Case of m#0 (1.95) let us examine only with low energies.
Calculation, analogous to that given, taking into account the

relationships/ratios

s . Wi tgg W 2 By W 2w
Qf = — 2 2 Coodt=220 o0 =t
2y & win W d W
gives
. _m
_ 2.) 4 . . wy’ 14 - Wy' 3 “”0 1y -] ‘
Weimmel s, ow T g ] 0

where xo— the initial value of phase factor (1.98). With m=0 formula

(1.101) is reduced to expression (1.100).

For the orientation in the possible values of phase change of
longitudinal oscillations at the length of linear accelerator let us
determine AY with the energy of injection 700 keV and exit energy of
the particles\of 24 MeV. Let W, =27.10% cosg, = 0.8. Then x =42, formula
(1.100a) gives for sy the value/significance of 23.6 or 3.75

oscillations at the length of accelerator. Basic vhase change occurs

with the low energies. With further increase in the exit energy phase
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change increases slowly.

Formulas (1.99) or with low energies (1.100), (1.101) allow at
<he given values of energy of injection and final energy of particles
to select phase factor x by such so that at the length of
accelerator would lie/fall/lay the integer of half-oscillations. The
obtained value/significance of phase factor makes it possible to
refine the value of synchronous phase and, therefore, middle fieid.
By differentiation of expressions (1.99), (1.100) it is possible to
obtain allowance for the value of middle field with assigned standard

deviation AY from computed value.

With an increase of the amplitude the freguency of longitudinal
vi_rations in the general nonlinear case decreases. For the
nonrelativistic speeds it is possible to obtain the following first
nonlinear approximation/approach to phase change of longitudinal

vibrations (W, = const):
AW:NJ_T‘szvE(l—% . (1.102)

where Ay, — phase change of small oscillations, determined by formula
(1.100a) ®» — the initial amplitude of phase oscillations. It is
interesting to note that with an increase in the energy of particles

"nonlinear” component of phase change approaches a constant value.




r
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This is connected with the fact that the amplitude of longitudinal
vibrations adiabatically attenuates, so that instantaneous frequency
asimptotically tends for the frequency of small oscillations. For an
approximate estimate let us examine the particle, initially close to
the separatrix: o= | 9 | Under the conditions of preceding/previous
example wos¢, =08 % - 4% p» =0.0386) we will obtain that the
nonlinear correction to phase change does not exceed 0.2 rad. This

value is sufficiently low.
§1.4. Longitudinal vibrations in the imperfect accelerating system.

The damage of the regular structure of the accelerating system
and different instabilities of amplitude and phase of electric field
bring the fluctuations of phases and particle momenta. These
disturbances/perturbations can be relatively greater as, for example,
the idle gaps/intervals between the resonators or an abrupt change in
the specific acceleration upon transfer of one resonator to another.
Any real accelerating system, even which does not contain the large
interruptions/discontinuities of regularity (which are most
frequently caused by design considerations and are considered during

the calculation), it has relatively small errors, distributed in each

period of structure according to the random law. Small errors exert a
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substantial influence on the characteristics of the accelerated beam
in view of the recurrence of effect on the particles. In the
accelerating system with drift tubes the basic sources of small
random cdisturbances are the random errors of location of centers of
the accelerating clearances along the longitudinal axis of
accelerator and the nonuniformity of middle accelerating field,
connected both with the random disturbances/breakdowns of geometry
and with those instabilities of accelerating field in the time, which
are compared in the duration with the time of flight of the particles
through the accelerator. The external resonances of longitudinal
vibrations in the linear accelerators usually prove to be
unessential, since at the length of accelerator is placed a small
number of oscillations, and frequency in this case comparatively
rapidly is changed. In the accelerating systems there are systematic
errors, caused by a difference in the real parameters of system from
the calculated ones, for example, by an inaccuracy in the

installation of the given value of accelerating field or by the

instability of field from one impulse/momentum/pulse to the next. All

errors of the accelerating system must satisfy the very close
tolerances,lwhich make it possible to avoid the exaggerated loss of
the intensity of beam upon the acceleration and to obtain the
sufficiently narrow spectrum of the distribution of the accelerated
particles according to the output energy of linear accelerator. In

the adjustable allowances is always important only first significant

r —————
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{ digit; therefore the calculation of allowances usually can be carried

out with essential simplification of the problem.

Page 44.

Let us examine methodlogy of the calculation of allowances for
different perturbation sources. Let us assume that the accelerating

system is the sequence of drift tubes loading a volumetric resonator.
a. Random errors in the accelerating system.

Let us examine the random disturbances of small longitudinal
vibrations in the nonrelativistic approximation/approach. The
amplitudes of the 6scillations of phase and relative difference in
the impulses/momenta/pulses in this approximation/approach are

connected, according to expression (1.87), relationship/ratio

. (1.103)
The equation of phase trajectory on plane vy, g takes the form
g=g'+ (3 Ve (1.104)

In the presence of the random errors in the accelerating system of
synchronous particle, generally speaking, there does not exist. Let

us examine the longitudinal vibrations of particles relative to

O i 1 D 8 i Ml 10—
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synchronous particle in the appropriate ideal system. Let in certain
period of the accelerating structure the center of clearance be
displaced to value 4z relative to regular position. Then particle
passes center in the phase of field, which delays relative to correct

phase to value

Further, a reqular increase in the impulse/momentum/pulse in the

accelerating clearance is equal

Us

Divergence from the regular increase with the random error in the

field and in the phase will comprise

7 OE
6p=Aap '\—Eoi—tgtv.&v) :

Hence, utilizing relationship/ratio (1.26), we obtain

g=20 (E—tewby ). (1.105)

Subsequently we will consider the random errors in field and relative
attitude of center as the independent variables, distributed in all
periods of the accelerating structure according to one and the same
probability law with the mathematical expectation, equal to zero. The
disturbances/perturbations of impulse/momentum/pulse (1.105) depend

on the number of period; the disturbance/perturbation is the greater,
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the lower the particle speed in the period.

Page 45,

Differentiating equality (1.104) and supplying/delivering/feeding
into into the differential

g gasin¥: y=Dcos¥.
it is obtained connection/communication between a change in the
amplitude of the oscillations and the disturbances/perturbations of

the instantaneous values of values ¥ £ in the n-th period:
70
(Sgan =sin ¥,08, - e n cos ¥, 0v.

Hence it is apparent that for any particle the mathematical
expectation of the disturbance/perturbation of amplitude after this
period is equal to zero: §g,,=0. A random increment in the amplitude
in the n period subsequently adiabatically attenuates. Toward the end
of the accelerator this increment, according to expression (1.94),

will give the following contribution to the amplitude

Gg‘,‘,, = 6&-.. (%‘“ v !

’

where 8,— particle speed in the n period; p§,— particle speed at the
output of the accelerating system. After the N periods of the

accelerating structure total increment in the amplitude is equal to

N
. T Ba NS
Aga= Eég“\% ‘

| e

nm(
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It is obvious that Ag:=0. Thus, the mathematical expectation of an
increment in the amplitude of the longitudinal vibrations of each
particle after the flight/span through the accelerator under the
assumptions accepted is also equal to zero. However, since the
disturbances/perturbations of amplitude in each period are by chance,

net gain in the amplitude is distributed according to certain

probability law. Let us determine allowances for the random errors in
the accelerating system, after restricting possible dispersion J\g,.

i.e. being assigned by value ! (Ag,;. The rms value of any random

variable x let us design~s“e by the curly brace
=13 (1.106)

Let us assume that the errors of the accelerating systems in

different periods structure are independent. Then

N
(Oga)* =3 (Sgan)? ’\—gf R

=

The square of the disturbance/perturbation of amplitude depends on

b

the instantaneous frequency and on the phase of the longitudinal

vibrations of the given particle in the period

§ (8gan)? = sin®¥, (8ga)* + [’%\): cos? ¥, (8¢)* - (/ —2- \/n sin 2¥,6g.0¢.

in question.

O il O

o
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The disturbances/perturbations of amplitude for different particles
prove to be different. We will consider that the region within the
separatrix is completely filled with particles, so that all phases of
longitudinal vibrations are equally probable, and averaged the square
of the disturbance/perturbation of amplitude on all particles. Since

in this case

THRW oW 1 ~our
sin? ¥, =cos? ¥, = ; sin2¥, =0,

that we will obtain

N
NURIAN 2, 2\ 2] Bn N2
(Aga)* = :\:U[wgn) <w> 8%) ]‘\ Bn) .

According to expressions (1.94), (1.105),

Hence

N N
agor=gog* Y () +g (5 00 3 (g 7
n=( [ T

Since a velocity increment in each period of structure is small, is

possible in the latter/last expression to replace sums with the

integrals:

. N
(Aga/" = ‘;‘ (6310/2 ‘ X i 6“7)’ g (_%)3/1 dn.

]
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From relationship/ratio (1.27) it follows
Brn=Bx—(N—n) kW,.

Substituting 8, into the integrals and producing integration,

finally we obtain

SN SR e e ] -
Mgy = ) 00— o L (1.107)
where N
op =2 g
dg = %‘Y’—-‘//ﬁ?-\)umztgzq:, (e (L1108
N ~ Lo

Page 47.

Into formulas (1.107), (1.108) are introduced some equivalent values

of the frequency of longitudinal vibrations and particle speed

= O (1.109,

falr) = 2 1252 L TI0)

Values Q., py are not the average/mean values of the corresponding

parameters at the length of accelerator. From expressions (1.109),
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(1.110) it is evident that

Ay < Py > Px.

If the contribution of all disturbances/perturbations to total

increment in the amplitude toward the end of the accelerator was
identical and equal to the contribution of disturbances/perturbations
in the latter/last period, then in formulas (1.107), (1.108) would
prove to be values Q/w and g, which correspond to the end/lead of the
accelerator. As noted above, the disturbances/perturbations of
amplitude in the first periods, other conditions being equal, are
more than on the latter. However, initial disturbances attenuate so
rapidly that their contribution toward the end of the accelerator
proves to be smaller than the contribution of the
disturbances/perturbations, which occur in the latter/last periods of

the accelerating structure.

With the change of argument .x=%?- from zero to unity, function
K

f,(x) and f,(x) are changed in the limits

2<hwglh F<hwgl

= R a2 S b ST 1 e WP i gl

For the creation of certain supply in the allowances it is possible

to accept f,=f,=1. Then into formulas (1.107), (1.108) enter values

and B at the end of the accelerating system.
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From formulas (1.107), (1.108) it is evident that the
disturbances/perturbations of amplitude with the assigned errors in
the field and in the arrangement of the accelerating clearances
grow/rise with an increase in the multiplicity of the period of
structure. Therefore the high multiplicity is undesired and can be
caused only by serious design considerations. Most frequently they

select k=1.

As it was established/installed, the vertical spread/scope of
separatrix attenuates slower than the amplitude of oscillations g..
The permissible value of the rms value of ~n increment in the
amplitude can be selected from the condition so that the particles in
the process of acceleration would not exceed the limits of the

region, limited by separatrix.
Page 48.

However, requirements for the monochromaticity of the accelerated
beam can make it necessary to dwell on lower values .g,. For
evaluating the order of the appearing allowances let us examine
proton linear accelerator with the parameters, stipulated above: k=1;
 Wa=27-10% cosg,=0,8; W,=700 keV; W,=24 MeV. We have

fo=10,04; Py =0.22; (%>i=l.5-10:'- The substitution of values into

formulas (1.107), (1.108) gives
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Let us accept the initial amplitude of the longitudinal vibrations of
the separatrix equal to vertical spread/scope at the input:

g% = giac =0.073. At the output of accelerator g5 =0.008. Let us
establish/install allowances in such a way that the random errors in
the accelerating system would increase the scatter of particles in on
the impulses/momenta/pulses at the output not more than by 250/0.
Then .Ag, =0.002. Distributing allowances evenly between both basic

errors, we obtain

SN N
ﬂe#g
i=1
\/\/
(3]
QO

B. Systematic errors in the accelerating system.

Systematic we will call the errors whose distribution along the
axis of accelerator does not carry random character. Such errors,
besides a difference in the established/installed amplitude of
accelerating field from a precise value/significance, include the
calculated errors in determination of the factor of transit time and

lengths of the periods of structure, and 21so scale errors during the

longitudinal arrangement of drift tubes.
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Let us examine the accelerating system, assembled in a precise
conformity with calcultion, without the random errors. By this is
already assigned an increase in the length of each following period
of the structure of relatively of preceding/previous, i.e., is
assigned a partial increase in energy of synchronous particle in each
this period. At fixed value/significance A

AL = kAR,
where

= W,
By$to °

Eence, according to expression (1.10),

ek3

. L1l
V%, const { }

A = E(‘)TA.z COSs @,

Page 48S.

In the nonrelativistic approximation/approach ¥~~1 and, therefore,
E,TA*cos ¢, = C, = const. (1.112)

A change in any of three values E,, T, A causes the mixing of the

synchronous phase

Ag, =ctg ¢, E; —‘——7—.--1‘-2—‘.—1 . (1. 113

In this case specific acceleration in the already assembled

accelerator is changed only with a change in the wavelength of
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accelerating field. Utilizing equalities (1.25), (1.112), we will

.obtain

.._eCo L \114
“;“-—?o“'?-' (BN )

In accordance with equality (1.114) and final energy of synchronous
particle depends only on the wavelength of accelerating field. If
specific acceleration is constant along the length of accelerator,

then

Wo=5E0, (1 t135)

where (, — the path length of acceleration. A change in the parameter
A can be connected with the real frequency switch of accelerating
field and with the error of scale during the arrangement of drift
tubes along the axis. For example, if due to the error with the
comparison of tape measure each scale division exceeds rating, then
the true value/significance A, which is determining the real
arrangement of drift tubes, will be less than the calculated, and
final energy of synchronous particle will prove to be above
calculated. Frequency stability of accelerating field always can be

made sufficiently high due to the quartz-crystal control.

The given considerations prove to be especially demonstrative,

if we examine particle acceleration in the equivalent traveling wave.

It is obvious that final energy of synckronous particle depends only
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on the speed of the traveling wave, which seizes particles, but it
does not depend on the amplitude of the traveling wave. In the
relativistic approximation/approach the picture qualitatively is not
changed, but the dependence of synchronous phase on the amplitude of
field and factor of transit time becomes more complicated; according

to expression (1.111)

EoTA cos g, (& — Wy —eE,T!, cos ¢,i? = const

Let us note that although energy of synchronous particle changes only
with the variation of the parameter X\, the distribution of all
particles according to the energy spectrum depends on amplitude and
"inclination/slope" of field. Therefore, changing field, it is
possible in certain cases to move the maximum of energy spectrum in

the limits of separatrix.

The displacement of synchronous phase, connected with the
departure/attendance of the amplitude of field from the nominal
value, produces change in the frequency of longitudinal vibrations

(1.62) and phase factor (1.98).
Page 5C.

The requirement of the stability of phase change of longitudinal

vibrations at the length of the accelerator superimposes the close
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tolerance for the retention/preservation/maintaining of the rating

value of field. We will use formulas (1.99). Since o=const,

Sy 6

AY T T Tkt
For evaluating the allowance in the field it suffices to accept
nonrelativistic approximation/approach (1.113), since basic phase
change occurs with low energies. As a result we obtain

SLAW) 1 8k,
AV T 2sinlg, £,

(1.116)

With an increase in the absolute value of synchronous phase the
dependence of phase change of longitudinal vibrations on the H
amplitude of field is weakened/attenuated. On the contrary, at the
low absolute values of synchronous phase raid susceptibly/critically
depends on the amplitude of field. Let us examine a numerical

example. When W, =~ 27.10-* and cosq, = 0.7864 from the wave energy 700 keV

-
- ?-\,‘ 1 - - - g - -
Lo IZna. energry 100 Mev

-

in the linear by proton accelerator occur 6.5 longitudinal
vibrations. Being assigned §(A¥) =15, we obta‘in _"’%-;—0.5%.

Let us rate/estimate the effect of the rejected/thrown
corrections of the seéond approximation/approach to factor of transit
time and length of the period of the accelerating structure (see
§1.1). Correction to the factor of transit time is determined by
formula (1.20):

A2y (1.117)
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moreover in accordance with expressions (1.21), (1.62)

Q2

xz:!’(w/.
Thus, correction (1.117) has maximum value with the energy of
injection, and then virtually monotonically decreases. Let us examine
the knowingly worse case, after assuming that the factor of transit

time is changed in the beginning of accelerator by jump. This will

give synchronous phase jump to the value, determined by equality
(1.13),

AT
Ag,=ctg ¢, -

L0
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Fig. 1.13.
Page 51.

The "instantaneous" synchronous phase jump increases the amplitude of
small phase oscillations b the value of jump (Fig. 1.13) and
respectively increases the amplitude of the oscillations of the

impulses/momenta/pulses:

dg.= 2 A, (1.118)

Equality (1.118) follows from relationship/ratio (1.103). As a result
we obtain '

tak ‘s
Agl=‘n—6—“fdg¢r/\'£"/, .

The numerical this magnitude estimate shows that the effect of the
correction of the second approximation/approach is negligibly small.

Analogous result is obtained during the estimation of correction to
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the period of the accelerating structure.
¢c. Damage of the regular structure of the accelerating system.

The essential disturbances/breakdowns of the regularity of
high-frequency system are possible in by multi-resonator accelerator
on the transitions between resonators. If high-frequency fields in
the adjacent resonators are shifted relative to each other on the
phase value A¢, then this is equivalent to the shift/shear of
synchronous phase A¢, = A\¢ and is called an increase in the amplitude
of the oscillations of impulses/momenta/pulses (1.118). A similar
effect appears, if fields in the adjacent resonators are cophasal,
but they are distinguished by amplitude; according to expressions

{(1.1213), (1.118), we have

Ag,=»ctgq>,|-§-- ‘\Et;° . (LD

The allowance for the stability of field in each resonator is the
stricter, the lower the energy of particles and the less the absolute

value of synchronous phase. This allowance usually proves to be wider

than the allowance, determined by the stability of phase change of

longitudinal oscillations (1.116).

In many instances the resonators of linear accelerator it is

necessary to divide according to the design considerations the idle
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gaps/intervals, free from accelerating field. Idle gaps/intervals are

introduced for positioning/arranging of vacuum locks, .stations of the :
beam monitoring, etc. Regardless of the fact, are terminated
resonators with half-tubes or half-gaps, idle gap/interval always
leads to the supplementary drift of particles, which distorts the
phase volume of small longitudinal vibrations. Fig. 1.14 gives in
coordinates ¢.g the phase volume of the beam before the idle
gap/interval. Volume is limited to ellipse 1 whose semi-axes coincide

with the coordinate axes. The section of the drift between the

resonators distorts the initial ellipse (curve 2), since each

particle, retaining impulse/momentum/pulse, is displaced on the phase

relative to field to the value proportional —¢ =g
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Page 52.

Dotted line (curve 3) designated the greatest phase trajectory in the
following after idle gap/interval resonator. The region, occupied
with the representative points of beam, rotates with the frequency of
longitudinal vibrations within the ellipse {(curve 3). Therefore,

clusters after idle gap/interval begin to fluctuate.

Another source of the emergence of the pulsations, iich lead to
an increase in the amplitude of oscillations of phases or
impulses/momenta/pulses, is a possible difference in the specific
accelerations in the adjacent resonators. The difference in the
values of specific accelerations causes the jump of the frequency of
longitudinal vibrations on the transition. The case when frequency at
the output of the first resonator , higher than frequency at the

input of the following 2,, is shown in Fig. 1.15a, and 1.15b - the
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case 2,>2,. Solid line limited the phase volume of cluster to the
transition. Dotted curves - phase trajectories of different particles

after transition.

Let 1 - length of idle gap/interval; v, g — the coordinate of
certain particle at the input of idle gap/interval. The
representative point of this particle lies/rests on the ellipse,

which limits phase volume,

Coordinates of particle at the output of the idle gap/interval

Vo=t p i g=g (1.120)

e

In nonrelativistic approximation/approach {g-=-—mg (see 1.45a).

Point ¢, g: lies/rests on certain ellipse

®: = ':+<—g’->’g:. (1.121)
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Page 53.
Let us supply in equation (1.121) values y., g from equations (1.120) H

and will find the pair of coordinates ¥:. g. for which amplitude P, it !
has the greatest value/significance. Fcr this let us represent v, g

in the form

O
vy =‘D, sin ¥, g = '_-‘;: (Dl‘C0> v

and let us find value/significance y, corresponding to extremum ..

As a result we obtain

I LA :
@ Ty 2 [l N
3 T e .
i‘/‘.l—;\/%—%\ faf] _4\{32‘ ] : (1.122)
2 O,
ga.. g..l Q‘— ‘(D‘—
wvhere (@
a=2n 5 —~. =L (1.123)
A
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1f Q,=Q,, then relationships/ratios (1.122) are reduced to the

simpler

s N Y e A LR ST
Oizl,l_j—:uyﬂ e 124

Usually a<<l; in this case

D,

: (1.124a)
@,

=1+

s

The effect of idle gap/interval on the energy scatter of particles is
the less, the higher the energy of particles upon transfer. However,
even with comparatively high energies idle gaps/intervals noticeably
affect the parameters of beam. Thus, output energy of the first
resonator of the linear accelerator of protons I-100 is 43 MeV; the
frequency of longitudinal vibrations in this place 2~~0.03w. With

1=2ﬁk the amplitude of longitudinal oscillations increases by 20o/0.

In the absence of the idle clearance a=0 and formulas (1.122)

lead to two cases

4)

»

) 2< goy =8 Po=4-Ds

Q‘,
2) &>Q; ga,=g 8y =P
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Page 54.
Chapter 2.

Transverse vibrations of particles in beams with the negligible

density of space charge.
§2.1. Defocusing factors in the linear accelerator.

In the linear accelerators must be provided special measures for
the beam focusing of the charged/loaded particles. It is necessary to
create either the supplementary permanent fields, intended for the
retention of particles near the axis of accelerator, or the special
configurations of the high-frequency field, which permit implemention
of simultaneously acceleration and focusing. If such special measures
are absent, then beam of particles diffuses. It is possible to
name/call three basic factors, that lead to the defocusing of beam in
the linear accelerator: 1) the disordered scatter of transverse
thermal particle speed; 2) the defocusing action of accelerating
field; 3) electrostatic pushing apart between the
similarly/analogously charged/loaded particles of beam. Let us
discuss the first two factors. Latter/last factor is in detail

examined in Chapter 3.
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The particles of beam possess disordered component of velocity
on all three coordinates, caused by thermal particle motion. Particle
distribution according to the thermal velocities depends on
temperature and configuration of source. If the disordered component
longitudinal velocity it is possible to disregard in view of the fact
that it usually to is many orders less than the regular component,
then disordered components of transversing speeds substantially

affect the behavior of beam in the accelerator. Specifically, due <o

ot

he presence of the transverse thermal velocities beam of particles
in the accelerator or in the ion guide never succeeds in gathering in
the point focus. Since there are always thermal velocities, directed
outside of beam, the latter diffuses during the free drift of
particles [30]. Due to the scatter of particles on the speeds and on
the attitude the representative points of beam occupy final volume in
the six-dimensional phase space. In accordance with Liouville's
theorem six~dimensional phase volume is invariant in the space of

canonical-conjugated/combined variable/alternating.

Page 55,

Will examine the projections of six-dimensional phase volume on the

phase planes z, p, (or %.p¢h x. psi y. py. 1In the general case
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Liouville's theorem does not require the invariance of each
projection. However, a change in two graduated phase volume on one of
the planes produces change its on other planes due to the invariance
of six-dimensional volume. There is an important special case when
variable/alternating in the equations of motion are divided. Then
Liouville's theorem proves to be valid for each subspace
individually. Let us examine the character of transverse particle

motion in any plane (for example, XOZ) depending on the form of the

two-dimensional phase volume of beam in coordinates x, x'=dx/dz.
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Fig. 2.1.

Key: (1). Beam of the in parallel moving/driving particles. (2).

Homocentric ray. (3). Beam with finite phase volume.

Page 56.
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In Fig. 2.la all particles of beam move in parallel to axis and,
therefore, they have zero transverse component of speed. In
accordance with this the representative points lie/rest on the axis
of abscissas and occupy the cut, equal along the length to the
diameter of beam. The phase volume of beam is equal to zero. In Fig.
2.1b particles move over straight paths, which converge to one point
(homocentric ray). The transversing speeds of particles in this beam
are proportional to misalignment. The representative points with the
assigned longitudinal coordinate z prove to be in the rectilinear
cut, inclined toward the axis of abscissas. To particles in section 1
(see Fig. 2.1b to the left) correspond the representative points in
cut 1 (see Fig. 2.1b to the right). The projection of intercept on an
axis of abscissas is equal to the diameter of beam. With further
particle motion of the cuttings off it rotates clockwise and it is
lengthened (see cut 2). The phase volume of beam remains equal to
zero. To convergent beam corresponds cut with the negative
inclination/slope. Homocentric ray with the aid of the
adequate/approaching lenses always can be converted into the beam
parallel to the moving particles. On the other hand, lens with the
nonlinear fields is converted fectilinear cut on the phase plane into
the curve, retaining zero phase volume. Fig. 2.1c gives envelope of
particles with the phase volume of finite quantity. In this beam at

each given distance from the axis can be located the particles whose

speeds are continuous in certain finite interval of velocities. Let
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the phase volume on plane x, x' be limited by ellipse. To convergent

beam corresponds ellipse with the negative inclination/slope of major
axis (curve 1); to divergent beam - ellipse with the positive
inclination/slope of major axis (curve 3). The projection of ellipse
on the axis of abscissas is equal to the diameter of beam at the
particular point z. During the free drift of particles the phase
volume of convergent beam rotates clockwise, since all representative
points move in the positive (with x'>0) or negative \with x'<0)
direction along the axis of abscissas, without changing transversing
speed. At certain point z the major axis of the ellipse coincides
with the axis of ordinates (curve 2), which corresponds to the
crossover of bundle. At the point of crossover envelope of particles
is parallel to longitudinal axis. Subsequently, after crossover, the
beam with the final phase volume diffuses even in the absence of any

other defocusing factors.

With the particle motion in electromagnetic field the
generalized momentum, canonically conjugated/combined with the
Cartesian coordinates, is the variable/alternating [21]

P=p-+eA, 2.1y
where p=mv - particle momentum; A - vector potential of field; B=rot
A. If in the magnetic field is absent longitudinal component (B.=0),

then 4, =A,=0 and P,=p,; P,=p, Thus, during the motion in plane X0Z,

which does not depend on the remaining variable/alternating, and when
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B,=0 phase volume is retained in variable/alternating . /=
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Let us name/call the two-dimensional transverse phase volume of beam

value

Va= —— \ dxdps. 2.

Mgy

o
Lv]

where the integral is taken by entire volume, occupied by the
representative points of beam on plane «x. p,. In other words, V.-
divided on 7 the area, occupied by beam, on the plane displacement -

given impulse/momentum/pulse.

Frequently as the measure of the phase volume of beam is
considered divided on 7 the area, occupied with the representative

points of beam on plane x, x'=dx/dz:

E:—:T g dxdx’'. (2.31

v

This value is called the emittance of beam. The emittance of beam is
connected with the transverse phase volume with the

relationship/ratio

E_._Va_ (2 H

Emittance is convenient as the value, usually directly determined
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from the direct measurements. Furthermore, emittance is conveniently
used, as this will be clearly from the following, in the theory of
the circular accelerators. However, in the theory of linear
accelerators to more preferably use the concept of transverse phase
volume (2.2) as by the value, not energy-dependent of particles.
Emittance is determined on the plane of the variable/alternating,
which are not canonical-conjugated/combined. With an increase in che
energy of particles the emittance of beam decreases and it vanishes
with y~»=, Respectively it vanishes scatter of path inclinations.
With the low energies the decrease of the scatter of trajectories is
connected in essence only with an increase in the longitudinal
velocity of particles. With the relativistic energies the dominant
role begins to play an increase in Lorenz's factor. The decrease of
the sﬁatter of trajectories with an increase in the energy of
particles leads to the fact that the beam of relativistic particles
in the short sections of drift does not need focusing. One should,
however, note that with the distance of drift in several ten meters
has already been perceived the deliquescence even high-energy

electron beam.

The particles, seized into acceleration mode by the axisymmetric

high~frequency field, test/experience in this field transverse

defocusing. Defocusing occurs under specific conditions, which are

usually satisfied in practice. Actually/really, the equation of
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motion of particles in the field takes in the general case the form

ap
—d—‘=eE~,-e[v8|. (.

L)
“n

Page 58.

Let us accept cylindrical coordinate system r, ¢, z with z axis,
directed along the axis of accelerator, and will examine the
axisymmetric field, type ™™, £,=0; B8,=8.=0. Then

Pr e (Er—uBy).

dr

where v -~ the longitudinal velocity of particle. As it is easy to
obtain,

do, _ c ddr dr Jd
Y. G TR

. - to

dat

ny . (2.6)

moreover Lorenz's factor is determined only by the longitudinal
velocity of particle, since the transverse components of the velocity

substantially lower than longitudinal. Coefficient with first-order

derivative in the right side of equation (2.6) is low, since ln y -

slow function of time. 1f we examine by the component/term/addend in
the right side of equation (2.6) it is possible to disregard.
Detailed estimations show that at the usually utilized in the ionic
accelerators values of specific acceleration the effect of the
rejected term on the particle motion is negligibly small up to y~~2.

Thus,
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d?r e /
—— = ——— -_— 9 7
T = oy L Er—vBo). (2.7)

Further, for the points, close to the axis, from the equations

of Maxwell

E, OE, oE B;; . B¢ . __l_‘_ JE. 0
ailr il -l Uit =l S TH (2.8)
considering that on axis E,=pB,=0, follows
| GE 1 OE
E=—5-%0 Be=5a 5" (2.9)
Hence . o oE
ar e tz v 9Lz 2.10
AE= TEmgy N & o )" (2.10)

Let us examine, first of all, particle motion in the field of

traveling wave (1.43). According to equation (1.43),

JE, dE, .

G- = — Vi (2.11)
dE .
52 =-°'i"-E sin @. (2.12)

Substituting equalities (2.11), (2.12) in equation (2.10) and taking
into account designation (1.25a), (1.62), (1.82), for the paraxial

particles, close to synchronous (p=~g¢,; v=~v,), we obtain

d¥r

F—-;-Q’rao. (2.13)

Longitudinal vibrations in the linear conservative
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approximation/approach are described by the equation, which follows :
from expression (1.72)

d? »

Page 59.

From equations (2.13), (2.14) it is evident that the stability
conditions for longitudinal and transverse vibrations in the
traveling wave are incompatible. If sin ¢,<0. then ©?>0 and the
longitudinal vibrations of particles are stable, but transverse

vibrations prove to be unstable.

The defocusing action of accelerating field, just as the
defocusing action of the scatter of thermal velocities, decreases
with an increase in the energy of the particles: with g=>1 we have H
Q?«>0, This is explained by the fact that the magnetic component of
high-frequency field in contrast to electrical focuses particles,

moreover with an increase in phase wave velocity the action of i

magnetic field is intensified. In the limit, with g->1, effect of
both components of high-frequency fields to the transverse particle

motion is compensated.

Let the particles be accelerated in the field of standing waves,

for example in the accelerating system with drift tubes. The
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sag/sagging accelerating field in the clearance between drift tubes,
connected with the edge effects, leads, according to equation (2.9),
to the appearance of a radial component of field (Fig. 2.2). Let us
recall that the electrostatic field between two diaphragms always
acts as the converging lens independent of the direction of field
(31]. Actually/really, let us suppose that the field is directed
along the particle motion. Then particle obtains at the input of
clearance the suppleméntary transverse impulse, directed toward the
axis, and at the output - from the axis. Since the particle speed in
the clearance grows/rises, refraction of trajectory at the input
proves to be more than at the output, and as a result particle
trajectory is inclined axis. When field has opposite direction, then
the particle speed in the clearance falls, but the defocusing action
occurs at the input of clearance, and that focusing - at the output.
In the linear accelerator the field in the clearance is changed in
the time, moreover for the particles of those moving near the
synchronous, E,z< Eay, SO that the defocusing radial component at the
output of clearance exceeds the focusing radial component at the
entrance. If field is changed sufficiently slowly (which occurs at
the low absolute values of synchronous phase), then will prevail the
effect of an increase in the particle speed in the clearance and

clearance as a whole will be the converging lens as in the

electrostatic case. But if field change for the time of flight of the

particle along the clearance is sufficiently great, then the effect
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of a velocity increment does not compensate the difference in action
of radial components at the entrance and output and clearance will

act as diverging lens.

Equation (2.10) describes particle motion in the accelerating

clearance, if F.- the field, concentrated in the clearance. Let us

establish connection/communication between derivatives %?_ and -%?.

being limited to the first running harmonic of Fourier-expansion of

field (1.42). Taking into account equality (2.11) we obtain

(2.15)

. 4

Figo 2020
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Let us rate/estimate, on the basis of equation (2.1%5), refraction of
the trajectory of synchronous particle in the accelerating clearance.
In this case we will consider that the particle displacement at the
gap length is not changed, and we approximate field in the clearance
by "square wave" (E;=0 when :—z >g2 and F,=const when z—z <g2.
Examining equation (2.15) in one period of the accelerating
structure, let us pass from differentiation with respect to time to
differentiation on the longitudinal coordinate; in the

nonrelativistic approximation/approach

—_— T e e——

T Toimgd @ (2.16)
Fracture of trajectory at the entrance of the clearance

-g/2
dr
A -~ ¢ r S dEz dZ,

or

dr

AT m— s rE .
dz 2”!00:‘ x(sx)

Analogously at the output of clearance we have

dr e
A 3z ~ W;;fEx(m).
Total refraction of trajectory on the clearance will comprise

A-d—i ~ Esouzy _ Erom ]
dz "~ 2mg Uy s 4

AE, = E:(-ﬂ) -— E:(n);

Av’vm—vn.
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Then in the first approximation,

A%sz:tnv [ AE, _Q_Ai] r. (2.17)

9 i
2moviy L Exan Unx

From expression (2.17) it is evident that with satisfaction of the

condition
Av AE, 2
o <, (2-18)
the accelerating clearance acts on the particles, close to the

synchronous as diverging lens. In accordance with the approximation

-

. w ‘\ Py : N
E.axy= Egcos -TS""' @ ' Epuny=Egzcos Q—S-f-q:,/‘. (2.19)

agcepted.
Page 61.

Hence

AL,

26, X sinae tgg,..
where a - coefficient of clearance (1.23). Taking into account
equality (1.27), it is possible to reduce condition (2.18) to the
form

W 2.18a)
g sin g’ b=

g @i >

If W, =3.10% g =004;,2a =14, then the accelerating clearance will work
as the converging lens only when 1gq, <0 or .¢, <6 The capture

region of particles on the phases proves to be in this case

inadmissibly to small. At the virtually acceptable values of
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synchronous phase the defocusing action of variable field is so great
that usually it is possible to disregard the effect of acceleration
in the clearance. With an increase in the energy of particles
inequality (2.18a) is amplified, which virtually reduces to zero
regions of the stable phases in which the accelerating clearance

focuses particles.

In the ionic linear accelerators is most frequently utilized the
strong focusing by quadrupole lenses. In the electron accelerators
and sometimes in proton the particles are focused by longitudina!
magnetic field. Structural/design complexity and high cost/value of
the technological equipment, intended for the cr&«a® on of =«:ie
external focusing fields, makes it necessary to search for the
methods of focusing due to the adequate/approaching geometry of
accelerating field itself. Historically the first method of beam
focusing in the proton linear accelerators was grid focusing Tonne
[7, 32, 33] which happens to be one of the types of focusing by means

accelerating field. Grids or foils, which closed the entrance of A
each drift tube, created the geometry of field necessary for the
focusing in the clearances. However, from grid focusing at present
they refused due to the exaggerated losses of beam current in the
accelerator and due to others, less essential ones,

deficiencies/lacks. From other proposed in the different time methods

of focusing due to accelerating field is most promising, apparentiy,

the use of high-frequency quadrupole lenses [34]. This method, based
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on the failure of the axial symmetry of accelerating field, is at
present studied theoretically and experimentally [35-37], but

practical use/application thus far it did not find.
§ 2.2. Strong focusing. Quadrupole lenses.

In the managements/manuals on electron optics usually in detail
is examined the particle motion in the longitudinal magnetic field
(optician Busch). The fields of solenoids were utilized for the
focusing of electron beams in different areas of technology even long

before the appearance of accelerators.
Page 62.

With the particle focusing of high-enefgy by longitudinal field basic
motion is directed in parallel to magnetic lines of force, so that
the appearing forces are proportional to small transverse components
of speed. It is obvious that more effective would be the magnetic
field, directed perpendicularly to motion. Then the focusing forces
would prove to be proportional to the longitudinal velocity of
particles. Analogous situation occurs, also, with the particle
focusing by the electrostatic fields. It is desirable so that the
lines of force of the focusing electrostatic field would be in

essence directed perpendicular to longitudinal particle motion.
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However, in the space, free from the charges or the currents, it is
not possible to form the fields which would create the radial forces,
directed toward the axis simultaneously at all angles. In particular,
fields with the quadrupole symmetry (Fig. 2.3), directed created
toward the axis of force in plane x, simultaneously create the
defocusing forces in plane y. Fig. 2.3a depicts magnetic quadrupole,
moreover it is assumed that the particles move from the plane of
drawing to the reader, while in Fig. 2.3b - electrostatic quadrupole.
If we place along the axis quadrupole lenses then so that the
adjacent lenses would be turned relative to each other on 90°, then
in each of the planes will be alternately created the focusing and
defocusing sections. With satisfaction of the specified conditions
this system of lenses proves to be focusing. Actually/really, to the
particle, which moves accurately along the axis, the forces do not
act. The further the particle from the axis, the greater the acting
forces. This makes it possible to understand, why two
consecutively/serially confronting lenses, expanded/scanned on 90°,
can focus in both planes. Let the particle fall first in the focusing
section. In this section the particle trajectory is bent towards axis
(Fig. 2.4) and particles will pass the defocusing section with the
smaller divergence from the axis, than in the first section. The

focusing forces prove to be more than defocusing, so that as a whole

the pair of quadrupole lenses proves to be accumulating.
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Fig. 2.3.
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A similar effect appears also in such a case, when is at first
arranged/located the defocusing section: particle displacement from
the axis in the defocusing section is less than on that focusing. In

this, speaking in general terms, and consists the idea of hard/rigid,

or alternating, focusing. From the given qualitative picture it is
evident that with the strong fbcusing the fundamental
value/significance has a presence of field gradient. If field
gradients in the quadrupole lenses are too great, then already after
the focusing section particle can cross axis and then the defocusing

section deflects trajectory in other direction from the axis. The

pair of lenses will prove to be scattering.
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The strong-focusing channel consists of a large number of
consecutively/serially alternating focusing and defocusing sections.
In this channel there is a clearly expressed periodicity of
structure. The smallest length of the repetition of structure we will
call the period of focusing field S. OnF33.2.5 is schematically shown
the particle trajectory in the strong-focusing channel. Trajectory is
modulated with the period of focusing field. In all focusing sections
the particle on the average is distant from the axis more than on
adjacent those defocusing. The stability conditions of
oscillations/vibrations in the long channels differ from the
conditions, under which the combination of quadrupole lenses F and D,
which constitute one period, is accumulating. The object/subject of
our further examination in essence will be the theory of the channel
optic/optics which is more complicated than the theory of one

converging lens.

The period of focusing field can consist of different

combinations F- and D-quadrupoles.
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Fig. 2.4.
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The advantages and disadvantages in one or the other type of channel
depend on the concrete/specific/actual requirements, part of which
will be discussed below. Some possible types of channels are given in
Fig. 2.§. The lenses, united structurally/constructurally (for
example, arranged/located within one drift tube), are conditionally

shown confronting close friend from to friend.

Strong focusing was for the first time proposed for the linear
accelerators by Blewett [27] and it is now best of the possible types

of focusing. From the moment/torque of the discovery of the principle
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of strong focusing [38] to the investigation of the rectilinear
strong-focusing channels and separate quadrupoles are devoted many

works [39-56].

Before passing to the optic/optics of channels, let us examine
quadrupole lens. Let us assume for the concrete definition that the
lens is magnetic. Then let us transfer results for the electrostatic
lens. Without examining thus far the effect of edge effects, let us
suppose that lens - infinitely long, so that the problem about field
distribution is reduced to the flat/piane: B,=0. Field in the
aperture of lens satisfies the equations of the statics

rotB=0; divB=0.

Hence for two-dimensional problem we have

9B, _ 9By . 0By _ _ 9By . 9B: 9B, _4  (2.20)
dy dx ' ox

The components of field are changed in the limits of the aperture

(see Fig. 2.3).
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For example, component 8. it is positive in the upper half-plane
(during the distributio;mbf poles, indicated in Fig. 2.3); with the
decrease of ordinate value B8, decreases and then is reversed the
sign upon transfer of the ordinate through zero: B.<0 with y<0. It
analogously behaves component B, Let us introduce into the

examination the gradients of the components of the magnetic field
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L dB; . 9B,

grad By =i i ~,—j—u-y g
(2.21,

.98, 948,

g,radB,,=|»be-J—dy .

Utilizing equalities (2.20), it is possible to represent the gradient

of the vertical component of field in the form

, 08 ab
grad B, = i =

x .
el B

iy

Consequently,
grad B, '=|grad B, ; grad B, -grad B, =0.

Thus, at each point of field the gradients of components are equal on
the modulus/module and they are mutually perpendicular. The gradients
of components are usually called simply field gradient. Let us
introduce designation for the field gradient

' G= grad B, . (2.22)
The directions of gradient (2.21) are called the median axes of lens.
Median axes intersect in the beginning of coordinates always at the

right angle.

Let us introduce the potential of the static magnetic field
B=gradl,.
Potential U, satisfies the equation of Laplace which is conveniently
examined to account for quadrupole symmetry in the cylindrical

coordinates:
My I I dWy

—_—

ort 'Y‘_r—' or ,;i' aq" =O. (2.23)
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The general solution of equation (2.23), final in zero, takes the

form

p =]

Uslr, §)= X r™(a,sinng - b, cos ng).

n=i
where n due to the periodicity of potential along the azimuth - whole
real numbers. The quadrupole symmetry of field in the most general
case superimposes the following conditions on the potential (see Fig.

2.3):

Lo(r, 0)=Uy '\b/f‘

Lolr.g)=Ly r

Page 66.

From the first two equalities it follows: 6, =0; n=2t From the
latter/last condition we obtain k=2m+1. Consequently, the potential
of the field, which possesses quadrupole symmetry, contains only the
even, through one, harmonics
Us(ro @)= I aaamenr®®™+sin2 2m+ 1)g.  (2.25)

The first terms of series/row (2.25) exist

Uglr, tp)=:a2r’sin2qa'-¢-a,r‘sin6qa~'-a,or‘°sin 10p < ... (2.25a)

Hence

By = - 2o _ 95.r cos 2¢ + 6247 08 6¢ - 10a,,7* cos 10

» =gy = 4G Cos ¢ + 6aer®cos 6¢ 10r*cos 10 —....
The vertical component of field at points on the axis of abscissas

takes the form

B, (x, 0) = By (r, 0) =2a,x+6aex®+ 10a,px* ... (2.26)
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Let us name/call the lens of ideal, if field gradient is constant in
the section of aperture. The pole of ideal lens they are limited by
hyperbolas. Actually/really, with the high accuracy on the surface of
the poles, prepared from the magnetic material with large
permeability (ly=const. Since x=r cos ¢, y=r sin o,
Usp(x. y)=2a.xy — 2aq (3 — 10x3y* ~3y*) xy — .. ..

Boundary conditions are satisfied on surfaces of xy=const with
a,=a,,*+.. =0. In the ideal lens

Ue=Gxy; G=-const;

(2.27)

B, =Gy, B,=0Gx.

In the electrostatic lens median axes are turned relative to
magnetic lens on 45° (see Fig. 2.3). In expression (2.25a) the sine
of dual angle converts/transfers into the cosine. Therefore for the
ideal electrostatic lens

Uo'=%G(x’—y'):

(2.28)
E.=Gx; E,= —0Gy.

In the strong-focusing channel, which consists of the ideal
lenses, the equations of motion of particles are linear. The

nonlinear components of focusing field (2.26) cause the distortions

of phase volume, which lead to the losses of particles or a

deterioration in focusing [52]. Therefore one should approach that so

that the focusing fields would be linear possible.
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Allowance for the nonlinearity of the field of quadrupole lenses in
the strong-focusing linear accelerator is evaluated below. In
practice it is not possible to perform lens with the ideal hyperbolic
poles. In the magnetic lenses it is necessary to leave places for
distribution of windings, in the electrostatic ones the length of the
generatrix of pole is limited to the permissible breakdown voltage.
Meanwhile hyperbolic of pole with ragged generatrix lead in many
instances to the nonlinearity of field, which exceeds nonlinearity
with the poles of another form. In the small quadrupole lenses,
intended for the arrangement/position within drift tubes, usually
they prefer to utilize pole with the flat/plane profile/airfoil,
which leaves more than winding space. The necessary linearity of
focusing field can be ensured, if beam section (taking into account
the oscillations/vibrations of beam as whole) it is considerably less
than the magnetic aperture of lens. This however, makes it necessary
to increase magnetic aperture, which is extremely undesirable from
the point of view of maximum core induction and the power scattered

in the lens, and sometimes also it is impossible.

From expression (2.26) it is evident that in the nonlinear

focusing field are present the members of fifth, the ninth and so

forth of degrees. The nonlinearity of field can be considerably




— | S

DOC = 82105204 pace |3l

decreased, if to fit this form of the rectangular profile/airfoil of
the pole piece, with which of expansion (2.26) will fall out the

member of fifth degree [53]. Let us note that the suppression of the

member of fifth degree is possible not with any form of
! profile/airfoil. Since the break of hyperbola leads to relative field
weakening on the edges of operating region, then for decreasing the

nonlinearity of field is necessary the profile/airfoil, which speaks

in favor of hyperbola to the side of operating region. One of the

B e T

possible forms of this profile/airfoil is rectangular pole. Fig. 2.7a

gives one of four right-angled pole pieces. For reasons of symmetry

it suffices to examine potential distribution in one quadrant of

plane x, y.
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FOUT

ORI SO

]
%




DOC = 82105204

PAGE 1334

[

oY

J 2 x [/ § s
Fig. 2.7.
Page 68.

I1f we introduce the complex coordinate z=x+iy, then expression for
potential (2.25) will take the form

Lpx, 1) =1Im
Hence it is apparent that the series/

x

S A2am-no-im= e
mam()
ro
3’

W(x.y)—

G2(gms1)22EM=D
m-O

this is complex potential of the flat/plane quadrupole field

W(x, y)=Ve(x. y)~ila(x y)
where V, 3

- function of flow. Complex field B=B8,-iB

is determined
by expression [57])

dw WQ -OUQ
B=r=g+is-

Complex potential can be found, if to produce conformal mapping of

the region, limited by coordinate semi-axes and the generatrix of

pole, onto the single band of plane W then so that the coordinate
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axes would pass into straight line Ug=0, and generatrix - into

straight line Ug=] According to Schwarz-Christoffel theorem [57]

the conversion

d: Cir—bn':

- 1 g, +1
dy (Bz_az) S(2—1) M e

transfers/translates the region of plane z indicated to the upper
half-plane of complex variable {. The parameters of representation a,
b depend on the coordinates of the salient points of pr.file/airfoil.
The constant C is determined by the circuits/bypasses of the infinite
point of region on plane z and the point {=1 corresponding to it on
the plane §. The'function, which reflects half-plane to the single
band, exists

_ ¢ W
C-—-th—z—.

Calculation leads to the following expression for the coefficient

with the sixth harmonic of the potential

3né a3 (y3—1)2

Gs = — g5 i @) (2a°b*+36°—6al),

moreover the sizes/dimensions of the pole (see Fig. 2.7a) they are

connected with the parameters, a, b with the equalities

0

Lo_ 2 (@=ne | (G —onag
BT =) @—antegr—nitt
| 9 H 1
h_ 2 (=D 4 \' (8330 4 .
i3 (=1t (cs_al)lr‘c(;c.._”c'/c
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Thus, by the adequate/approaching identification of parameters a, b
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and respectively the sizes/dimensions of profiiesairfoil it is
possible to reduce coefficient a, to zero. In this case coefficient
a,, honcritically depends on selection a, b. One of the possible
combinations of the sizes/dimensions of the pole piece, which ensures
the suppression of the sixth harmonic of potential, exists 1,=0.4852;
1,=0.5741; 1,=0.7700. Distance from the axis to the pole is accepted
by the equal to unity. For the comparison Fig. 2.7b shows trapezoidal
pole with the apex angle of 30°. This pole is used in the quadrupole
lenses of linear accelerator on 50 MeV in CERN. Field measurements
showed (56] that on radius 0.75 in the lens with the suppressed sixth
harmonic the gradient differs from its value/significance in zero for
50/0, and in the lens with the pole, shown in Fig. 2.7b, to 200/0. In
the latter/last lens the divergence of gradient of So/0 occurs on
radius 0.57. The relative deflections of field respectively are

everywhere less.

In the short lenses occurs the "sag/sagging” of field after the
edge of lens and gradient depends on longitudinal coordinate.
Potential satisfies the equation

Mg 1 Wy 1 o, Iy
ot A T =0
Dividing variable/alternating, we obtain the following
general/common/total expression for the potential of the short

quadrupole lens:

-

Qume2 (B) Iimea (RP) sin(4m — 2) e’ “dk.  (2.29)
)

K

U.(" P, )= S
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The vertical component of field on the axis of abscissas is equal to

-—n u
2

By(x., 2=\ E (4m —-Q)a,,,.,:(/c)]—”'—'-:‘f‘“e"’dk.

- c m=

Expanding the modified Bessel functions in power series [28], we

obtain
By(x, )= & N Apj(z) ity (2.3
m={ j=¢
where
-
4”!?2

\ p22mei4tig %
T T \ & Q. (R) €' dE.

Ami (Z) =

Series/row (2.30) is conveniently represented in the form

B(x, )=G(2)x~ Y Amg (2) £V =

n=1{

2 ™ <
= X Ay ()x¥ = NN gy i, (2.30a)
=1 m=1{ j=1{
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Function G(z)=A,(z) - field gradient on the axis of the short lens
Gu)=%£laxzy 2.3
Coefficients Ay, (z) are determined by the course of gradient on the

axis: (—1y 4G (2)
Aoy () = mrmreTi @

it is substantially different from zero only in the edge/boundary

sections of lens. The remaining coefficients of series/row (2.30a)
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depend both on the edge effect and on the profile/airfoil of the pole
pieces, moreover coefficients A, (22 during the limitless elongation
of lens approach within the limit the appropriate coefficients of
series/row (2.26), which corresponds to field with the assigned
pole-piece configuration. In contrast to the field of infin.tely long
lens in resolution (2.30a) are present the members of all odd
degrees. However, it is possible to show that in the short lenses the
contribution in the refraction of trajectory give only coefficients
Ame. Therefore the considerations given above about the selection of
pole-piece configuration retain value/significance, also, for the
short lenses. It is possible to investigate the effect of
nonlinearity on the particle motion in the channel, being limited to

the sum

S A, (2) A (2.32)
i

s
Mzs

B,(x, 2)=G(2) x—

Disregarding all nonlinear terms of expansion, we obtain
following approximate field expression in the short lens:
B, (x, 2) G (2) x. (2.33)

If we in the expression for potential (2.29) hold down/retain only
the term, quadratic relative to r, then let us arrive at the equality

' Ugl(x, y, 2) = G(2)xy. (2.34)
Hence it follows that approximate equality (2.33) is correct for any
values of the ordinates

B,(x, y, 2)=G(2)x. (2.33a)

Approximation/approach (2.33a) reduces to the linear equations of
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motion. The simplest appro;imation of the field of short lens - these
are approximation by "square wave": G(z)=const at the length of lens;
G(z)=0 out of the lens. This approximation can be refined, if we
instead of the real short lens introduce into the examination

equivalent lens with the constant gradient and to fit its length and

4 ~ ~av 2o 3 -~ B N P - — ! .
ser-ain senses 2guivaleant to *the action 37 3 resl lens. —he choics

gradient then so that the action of this lens would be in an of
equivalent lens let us examine below. Fig. 2.8 shows the course of

gradient on the axis of real short lens.
Page 71.

The initial parameters for the rational design of quadrupole
lens are the gradient of focusing field and distance from the axis of
lens to the pole. The ampere turns, necessary for the creation of
field with the assigned gradient in the magnetic lens, can be
determined, on the basis of the general/common/total integral
relationship/ratio ,

§m1=§ods.
r
The corvenient way of integration is shown in Fig. 2.9 by dotted
line. During the calculation of integral on the left side let us
disregard/neglect magnetic intensity in the core. Let us assume a is

the distance from the axis to the pole (see Fig. 2.?). Then

+a/ V32
l§n¢n.. ( H,dy.

-/ V3
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In the linear approximation/approach to a field between the poles
!
Hy=maxv

where u,=47-10-'; on the way of integration x=a} 2. Hence
Y

Hdi = -1 g2
§ “000.
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Fig. 2.8.

Page 72.

Integral in the right side is equal (see Fig. 2.9)
{ 6as=2v1,

[

S
where NI - number of ampere-turns, which fall to one pole. Equalizing

both integrals, we obtain
NI = 2 10°Gaz.
Empiricism established/installed:“;hat éo account for steel core a
number of ampere-turns should be increased by 10o/0. This gives
NI = 0,44-10°Ga?. (2.35)
In the system of SI units the induction of magnetic field is measured
in the tesla: 1 T=10* G. Usually during calculations of accelerators

is more convenient to measure the induction in the gauss, and the

gradient of magnetic field in the gausses per centimeter:

G acicm= 100G ain. (2.36)
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Key: (1). mi/m.

Converting/transferring ir formula (2.35) to the gradient in the

gausses per centimeter and to the length in the centimeters, we have
NI =0,44Ga’. (2.35a)

It is easy to obtain also formula for the power, scattered in the

quadrupole lens, with the supply of windings by the direct current:

P=61.2: Gt (2.37)
Here P - dissipated power, W; p - specific winding impedance, Q-cm; [
~ average/mean length of turn, cm; S, ~ total area of windows for
positioning/arranging the windings; f -~ duty factor of window, equal
? to the ratio of the total cross section of copper to the area of
‘ window; G - gradient, G/cm; a - radius of magnetic aperture, cm. From
formula (2.37) it is evident that the dissipated power grows/rises
proportional to the fourth, the degree of a radius of aperture. This
is one of the most serious factors, which limit the aperture of the

strong-focusing channel with the supply of quadrupole lenses by

direct current.

For the electrostatic lens in linear approximation/approach

(2.28) we have

V-iéwﬂ (2.38)
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where G - field gradient, V/cm?, V - potential on each electrode

relative to the earth/ground (see Fig. 2.3b).

Let us compose the equations of motion of particles in the
strong-focusing channel taking into account the space charge of beam
and defocusing action of accelerating gaps. Repeating the

considerations, given above relative to formula (2.6), we have

dp __ d3r
FTERL ) Ry
Page 73.
Thus, l
dir | 3 .
W = "m(;;" F, (239)
where F - total force, which acts on the particle. This force it is l

possible to represent in the form of three components
» F=F,~F.—F,.
Here F, - force, which acts on the particle from the side of

high-frequency accelerating fi:ld. The amount of this force in

axisymmetric accelerating field of the type TM was found above [see

equality (2.15)]). In the Cartesian coordinates

e wE: .
Fxm = —2—{& * —E— (2) X
JE
Fyu‘_" —_2%' -o;“ (‘.') Y. (2.40)
F,” =8Ep

F..- the force of electrostatic pushing apart. U, A - scalar and

vector potentials of the proper field of the charged/loaded particles
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in the coordinate system, rigidly connected with the accelerator

(laboratory coordinate system). If E. B. - corresponding proper

fields, then in guasi-steady-state approximation/approach
E.=—uradl: B, =rot A. 12.41)

Since in the coordinate system, which moves along the longitudinal

axis with the particle speed, the vector potential is absent,

according to the formulas of the relativistic conversion of

potentials, in the laboratory coordinate system we have

L. (2.42)

.

Ax=.-ly=0: A;z

Actually/really, let us designate values in the moving/driving

AL
coordinate system by indices t®s then in general case [58])

L. = Y (Ln i L’.4zn); ‘
. B, b (2.43
/'11 = Axn; ‘.‘U = -'13411: .‘1; =Y . .'lgn T L a - ’

when A;,=0 we obtain expressions (2.42). Further, in view of the
Lorentz decrease of distances Jz;=yAz, where Az, - interval, measured
by observer, who moves together with Ts-system. According to the
formulas of the relativistic conversion of fields‘[58] E;=E,;n. Hence

Page 74.

According to expressions (2.41), (2.42), (2.44), the components of

the proper field of particles take the form

- _ o 1 U .

Ea= =i Em= =57 Em=—5- 55
By=2.%.p v &, (2.45)
== w Yy Ow= =i B=0.
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Substituting expressions (2.45) into the formula for electromagnetic
force (2.5) and disregarding the transverse components of speed, we
obtain
F=u=—3%-g-ﬁi, Fu=—5- % F;.«=—$—2-%% (2.46)
Fy - the focusing forces, connected with the fields of quadrupole
lenses. Substituting the values of fields B:(x, y, 2), B,(x. y, 2) into
formula (2.5) and disregarding the transverse components of the

speed, we have
Fzp= —evB,(x, y, 2); Fo=e0Bz(x, y, 2); Fip=0. (2.47)

. a W . . . .
Since Bx=-j§£=3u=‘@?v that in linear approximation/approach (2.34)

Fepg=—evG(2)x; Fue=evG(2)y; Fre=0. (2.47a)
for electrostatic fields (2.28) in the same linear
approximation/approach
Fzy = €Gx; Fyp= —eGy; F.p=0. (2.48)
Hence it is apparent that electrostatic quadrupole is equivalent to
magnetic, if field gradient in electrostatic lens G, is connected
with the field gradient of magnetic lens G, with the
relationship/ratio
Gy = UGy, (2.49)

this formula is conveniently represented also in the form

(
G, (8/cmu?) = 3008-G2 (ec/cm). {2.49a)

Key: (1). G/cm.

The gradients of magnetic quadrupoles in the initial part of the
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proton linear accelerator have values on the order of 5000 G/cm. Let
B=0.04. Then electrostatic is quadrupole, that replaces magnetic, it
must have a gradient G, =60000 V/cm?. With a radius of aperture a=1
cm this gradient is provided, if the potential of each electrode
relative to the earth/ground is V=30 kV, and the stress/voltage
between the adjacent electrodes 2V=60 kV. Quadrupole lenses, placed
within drift tubes, small sizes/dimensions. The guarantee of the
necessary gradient of magnetic field in such lenses does not cause
special difficulties. Meanwhile to ensure dielectric strength (on 60
kV) of construction/design within the tube is very difficult. In the

accelerator with drift tubes product §G, they usually keep constant.

Page 75.

Therefore field gradients in the magnetic quadrupoles decrease with
an increase in the energy of particles. But the field gradient of
electrostatic quadrupoles in this case does not depend from the
energy of particles and remains high to the end/lead of the linear
accelerator. Therefore electrostatic quadrupoles in the ".near
accelerators with drift tubes are not utilized. In other
constructions/designs electrostatic quadrupoles can prove to be more
preferable than magnetic ones, since they have some advantages in
comparison with the magnetic quadrupoles. The constructions/designs

of electrostatic lenses are simpler, in them to more easily
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maintain/withstand the necessary form of electrodes, there is no
dissipation of power. Furthermore, the electrostatic lenses, placed

within the vacuum channels, do not worsen/impair evacuation.

Let us design equation (2.39) on the coordinate axes and will
substitute the appropriate values of forces (2.40), (2.46), (2.47).

We will obtain the following equations of motion:

d*x ev e OE e ol
——=—~———28 L 2 — Lot
dF T gy S 8 g G e xS
ddy o . e OE. e A 5 -
J12 --’"0\' Bx(Xy B 4)-—3";‘?‘-- s (2. [)y_mo\x _J; RESTAL)
a2z ¢ - aU
dﬁ'—'mEz(zv 1)—;0?;-?.

Latter/last equation - this is the equation of longitudinal
vibrations, in detail examined above in variable/alternating ¥. P«
and disregarding by ‘the proper field of particles. In the general
case in equations (2.50) the vafiable/alternating are not divided,
since potential U depends on three coordinates. In this chapter let
us disregard/neglect the collective interactions of particles, after
placing U(x, y, z)=0. Since on above (see Chapter I) simplifying
assumption accepted the amplitude of accelerating field does not
depend on transverse coordinates, latter/last equation does not
contain x, y. We examined this equation independent of transverse
vibrations of particles. For each particle the equation of
longitudinal vibrations has certain solution of z=z(t), which can be

substituted in the first two equations. Then the equations of

transverse vibrations will not contain longitudinal coordinate. Thus,




P
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for the beam with the negligible density of space charge
variable/alternating in the equations of motion are divided: the
equations of transverse and longitudinal vibrations can be examined
independently. Hence, first of all, it follows that in accordance
with the theorem. Liouville must independently be retained the values

of phase volumes on plane +¢.p, and in four-dimensional space

X. Y. DPx. Py-

I1f we are restricted to linear approximations/approaches to
focusing fields, then the equations of transverse vibrations prove to

be linear, moreover variable/alternating in them are divided

Page 76.

In this case must remain invariant the phase volume for each of the

phase planes x, p. and y. p;

The coefficients of equations (2.51) depend on time. Coefficient
g%i is periodic with the period of the accelerating structure L.
Coefficient G is periodical with the period of focusing field S.
Us yv1lly tne period of focusing field contains the integer of periods

of the accelerating structure. Subsequently we will consider that the




DOC = 82105204 pace |41

relationship/ratio of periods indicated is fulfilled. Then the
equations of transverse vibrations (2.51) are reduced to the linear
equations with the periodic coefficients. It is convenient to switch
over to the dimensionless variable 7, with which the period of
focusing field is equal to unity,

dv= gt dt. (2.52)
Producing the replacement of variable/alternating in equations

(2.51), let us rewrite them in the form

42
—E%-~Q,(t)x=0:

o (2.53)
et Q, (T) iy = 0.
Functions Q,, Q, satisfy periodicity condition
Qr—1=Q(1). (2.54)
Into equations (2.53) are introduced the designations
2(1) =Qg (v) = Qu (%)
Q ¢ ® (2.55)

Q, (1) = —Qo (1) = Qu (1),

where Q, - function, determined by focusing fields. Disregarding the

scatter of longitudinal velocities, we have
Q(1=5C2, (2.56)

where p, - the longitudinal component of the impulse/momentum/pulse
of synchronous particle; Q. - function, which describes the

defocusing action of accelerating field

dE,
Q9= gyt ()

(2.37)

Before passing to the analysis of equations (2.53), let us
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examine the focusing action of short lenses. According to eguation
(2.50), the pasticle motion, which lies at plane XO0Z, in the field of
lens, free from accelerating fields and space charge, is described by
the equation

3 - -
y o= — . Bux, 2. 12.58)
23 2

Page 77.

Refraction of trajectory in the lens is equal
Jx ¢ o - 3 %G
AT ==\ B,x. 2rdz r2.a%

Let us name/call the lens of thin, if it is possible to consider that
at the length of lens the particle displacement does not manage to

change. The focusing action of thin lens is completely determined by
refraction of trajectory (2.59). Substituting series/row (2.30) into

integral (2.59), for the thin lens we obtain

dx e Q@ - m >
Ag=—5 2 3 xemern \ Amj(2) dz. (2.60)
me) j= 0 _-
Let us examine the integrals, entering sum (2.60). B, (» - function,

conjugated/combined with function 4, (2

4o
Am;(2) =\ By (k) et *dk:

-0
-~

B, (k)= EL-T ( Amj(2) et dz.

-

Then
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e
\ Anj(2yd:z = By, (0.

-

From the expressions for coefficients 4, [see expression (2.30) and
the following after it] can be obtained

By, (R) == k2GEm* =g (k). 12,611
Since refraction of trajectory (2.60) is limited, from
relationship/ratio (2.61) it follows that coefficient Bme(0).
proportional

Bo (0)==lim &Y% .. (k)
kh—0

is a value final. But in this case with j¥0

B (0) == lim k¥"*2k? . q 5.0 (k) = 0.
R

Thus, the contribution to sum (2.60) give only the terms, which

contain coefficients Amt(:). Page 78.
§ 2.3. BEquations of Mathieu-Hill and function of Floquet.

Particle trajectories in the strong-focusing channel are the
solutions of equations (2.53). Linear equations of such type with the
periodic coefficients are called the equations of Mathieu-Hill [59].
The equations of Mathieu-Hill are obtained during the analysis of
particle motion in any linear periodic structures. In particular, by

the equations of Mathieu-Hill are described particle trajectories not

only in the strong-focusing channels, but also in any long channels,




\
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which consist of the set of discrete/digital lenses. The
investigation of the parametric resonances, connected with periodic
modulation of the parameters of dynamic system, also always reduces
to these equations. Since any accelerators, including linear, are in
this or another form periodic structures, equations of type (2.53)
have fundamental value/significance in the theory of accelerators.
Therefore it is considered advisable for simplification in the
following presentation to stop at the character of the solutions of

the equations of Mathieu-Hill.

A 0 AR 0t~ A e e -
’ . Y

In equations (2.53) the variable/alternating are divided. Let us
examine one of these equations, after dropping/omitting the indices
& —Qmx=0. (2.62)
First let us assume that Q(r) - the arbitrary function of time. u(r),
v(r) - two solutions of equation (2.62), which correspond to
different initial conditions. The Wronskian (Wronskian determinant)

pairs of the solutions of the linear equation of the second order,

which does not contain first-order derivative, there is, value, not

depending on the time:

w 4@ 8o '=const. (2.63)

Tl @

So that two arbitrary solutions would be linearly independent, it is
necessary and sufficient so that the Wronskian determinant of these

solutions would differ from zero. Let us accept for future reference
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the following condition for the standardization of the real
fundamental pair of the solutions:
br—v =1 (2.64)
In particular, this condition for standardization satisfies the pair
of solutions with the initial conditions
w@=1 £0=0 v0=0 LO=1.
Let us take as the fundamental pair two linearly independent complex

solutions

X (D) =uy (T) + i, (1);
X2 (V) =ty (1) + vy (7).
It is expressed the second pair of the linearly independent real
solutions through the first
u2 = a“ul — aizv’:

Un = Q91U +a&U’.

Page 79.

Composing the Wronskian determinant of complex solutions, we obtain

| (S X
W = ij_xi dx: =
dt dr
u, [}
=@+ day ¢ (U —dyy)]. - duy  avy
dx dt

Since functions ¥, . are linearly independent, binomials a,,+a,, and
a,,-a,, simultaneously do not become zero. If . x: are selected
complex conjugate, then a,,=a,,=0; a,,=-a,,=l. Hence, under the

condition standardization for real fundamental pairs (2.64), for the
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complex conjugate solutions we have
X—dgr:_—x. ?:2!( =!—2i. {2.03
Let us represent the complex conjugate fundamental pair of solutions
in the exponential form
A(T)=0(T)e®T; y*(r)y=0g(1)e" W1, 12,501
Then any real solution takes the form
x(T)=ay (t)-}-a‘y_'(r)=AO(r)cos[¢|t)——-6]. (2.67
vhere A, © - arbitrary real constants, which depend on the initial
conditions
a »—%Ae‘”.
Substituting expressions (2.66) into the condition for
standardization (2.65), we obtain following common
connection/communication between rate of change in the phase of
solution and modulus/module of the solution:

dy

A _ol-f . (2.68)
Further, if we substitute solution in the form (2.66) into initial
equation (2.62) and to consider dependence_zé.sp), then we will
obtain the equation which satisfies the modulus/module of any complex
solution:

e LQ@o— =0 (2.69)
The general/common/total properties of the solutions of the linear
second order equation indicated with the coefficient, which are the

arbitrary function of time, play important role during the

calculation of the focusing of intense beams.
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Let us assume now that function Q(r) - is periodic (2.54). In
principle any pair of the linearly independent solutions of the

equation of Mathieu-Hill can be selected as the fundamental.

Page 80.

Remaining solutions are the linear combination of the chosen
characteristic functions. However, not any selection of
characteristic functions is equally convenient. It is possible to
show that there is always such pair of fundamental solutions of the
equation of Mathieu-Hill, through which all remaining solutions are
expressed by the simplest form. For the explanation let us examine
the trivial case when the coefficient of equation (2.62) is constant:

d2x
dr?

+ix=0. (2.70)

As the complex conjugate pair of the solutions of this equation are

always taken the functions
x () =ei%  x*(r) =e-iem,
Then real solution is represented in the form
x(t) = A cos (0t + 8), 2.71)
from which evident that any solution of equation (2.70) - harmonic

function with the constant amplitude and the phase, which linearly

depends on the time. The normalized characteristic functions take the

~ e OO
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form

p—iwt

I
(_

- elw‘l; Y.:

X= === 4
W }

-

el

Substantially the less successful selection of characteristic

functions would be, for example, such

Py 7 LT
% (1) = — ewt __I)_e~x(n\' :
b osw . : s

. '
X. (1) - _'_. - Wt ,‘,' Wt
Swo . ~

In this case, as it is easy to show, real solutions (2.67) take the

form
x{t)= '_43:@ } T—8cos?wt cos [y (1)< ). °(2.72)
moreover
3w
dt 1 -+8costwt °

Amplitude and phase of solution (2.72) prove to be the complex
functions of time, moreover to be dismantled/selected at the fact
that function (2.72) coincides with function (2.71), is difficult. If
we deal concerning the equation of harmonic oscillator (2.70), then
the amplitude of solution only then is constant, when the phase of
solution - linear function of time. However, for the equation of
Mathieu-Hill in the general case the selection of the

adequate/approaching pair of fundamental solutions is not so trivial.

Let us examine the arbitrary linearly independent pair of the

complex solutions of the equation of Mathieu~Hill X: (Y and x:z ().
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In view of the invariance of equation (2.62) relative to the
conversion of the independent variable r'=r+l, in any assigned
interval of function ¢, (t - ), yx2(t - 1) they will also be the solutions

of equation (2.62):

Y (T~ 1) = ag X (T) —apgs (T

X2 (T 1) = a Xy (T) — Qaayz (1),
where a,; - constant complex numbers corresponding to this,
arbitrarily selected fundamental pair of complex functions. We form
certain new complex solution of equation (2.62)

@ () = Ay, () + Bxa ().
The function

pt—l=Ay (t—H+Br.(v—1)
taking into account conversion (2.73) can be represented in the form
g (1+ 1) = (Aay,, =~ Bag) 1, (v) +~ (Aai. — Ba..) y- (1).
Let us select conversion factors A, B so that would be satisfied the
identity
P(t+1)=2p(7), (2.74)

where A\ - a constant value, condition (2.74) is satisfied, if
conversion factors satisfy the equations

Aayy + Bay, = AA;
(2.75)
Aaﬂ + Bag = AB.

The system of linear homogeneous equations (2.75) has nontrivial
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solutions with

ay—7 Qo

a,-_- O-_-:-— ;. l = 0

Thus, XA - this is the square root equation

AT —(Qgy — Qaa) 2 — (Q(yQnn — dyudny) - U, 12,745
Let us show that the combinations of values ¢ . forming the .
coefficients of quadratic equation (2.76), do not depend on the
selection of fundamental solutions ¥, yx.. Let us introduce for the
decrease of recordings the following designations for the columns and
the matrices/dies

(0= ( Xl‘) H

13

@=[2" o), 2.
10
(£)= (o 1) '

\ I

end section.
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The determinant of matrix/die (a) let us designate (a). Then linear !

transformation (2.73) is written in the matrix form in the form
(0)ee1 = (@) (). (2.73a)

while equation (2.76) is reduced to the form
(@) —A(E) =0. (2.76a)

Let us examine now certain other pair of complex fundamental

solutions *(T), %.(1). 1

We have

(%)ess = (5) (%) |

New solutions can be expressed through the old ones

(%) = (€) (X)=.

By hence consecutive substitution we obtain

(®)ee1 = (c) (a) (€)™} (%)x,

'
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where (c) ' - matrix/die, to reciprocal matrix (c):

(©) () =(E).

Thus,

(b) = (¢) (@) (c)™*. (2.78)
1f we as the fundamental solutions select *: and *: the equation for
A would take the form

(B)y—=M(EY =0.

Let us substitute into the latter/last equality expression for the

matrix/die (b) (2.78). Taking into account the identity

(E)y= () (E) ()"

we will obtain

HO)=A(E) =1(c) {(a) =M (ED} (o)7hi.

Since the determinant of matrix product is equal to the product of
the determinants of these matrices/dies, then

[(B)—A(E) = l(@)—A(E). (2.79)

Both polynomials (2.79) have identical roots A,, A, and, therefore,

the coefficients of these polynomials coincide:

— (A + Ay) =ayq + 823 = byy + boo;
Mhg= (@)1 =1(b) .
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Equation (2.76) does not depend on the selection of characteristic
functions and it is uniquely determined by initial differential
equation (2.62). To each root of characteristic equation (2.76)

corresponds its, specific for this pair of characteristic functions,

o e trtrim R i gt i et o Lt 1.

ratio A/B. We will obtain two functions, which satisfy condition

(2.74):
’? G (1) = Ay (T) 'T‘ Bx» (1); 12.80)
! G2 (1) = A%, (1) = Baxa (7).
{
!
; moreover
1
; G (T D=0 (1): ¢a(T=1) = Asg2 (7). (2.81
!
: According to expression (2.75),
_B_l_=)'l_all : ﬁ __."2“02 . (282)

In this case it is assumed that characteristic equation (2.76) does
not have multiple roots. By equalities (2.80) of function ¢,(r),
¢,(7) they are determined with an accuracy to arbitrary complex
factors. Let us compose the Wronskian determinant of these functions.

Utilizing conversion (2.80), we obtain

P 92 A B % X
| 49y dgp =, Cody dXa -
| dt dt | A: B, 4t dt |
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Let us substitute into the determinant, comprised of the conversion

factors, relations (2.82). This it gives

Ads .
ABr— A8, = G, (2.83)
5

~

If none of the functions o9,, ¢, is equal i1dentically to zero (A,=C,
A,#0), then determinants (2.83) it is different from zero. Functions
©,, ©, are linearly independent. It is obvious that other functions,
satisfying the assigned equation of Mathieu-Hill, to condition
(2.74), and linearly independent from o,, o,, there does not exist.
Actually/really, the existence of the third function contradicts so
that the system of linear equations (2.75) has only two series/rows

of the nontrivial solutions A/B.

The absolute term of characteristic equation (2.76) is
determined from the condition of the constancy of Wronskian
determinant. W(r), W(r+l) - the Wronskian determinants of functions

X1 X2 at the moments of time 7 and r+1. Let us substitute into

determinant W(r+l) expressions (2.73). It is easy to ascertain that

Wt+1)= (a)! W (7).

Since W(r)=const,

l 2!
P Oy (2.84)
c @z G
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On the assigned equation of Mathieu-Hill (2.62) depends only the
coefficient of characteristic equation with the first degree A. Let

us introduce the following designation for this coefficient

Ay~ G - 2chl. (2.%3)

Page 84.

The sum of diagonal matrix elements is called trace, or bore-hole,

this matrix/die

chl=%5p (a). (2.83a)

s et

Characteristic equation (2.76) is simplified

A*—2ichi+1=0. (2.86)

Since the coefficients of characteristic equation do not depend on

the selection of characteristic functions, it is possible, without

disrupting generality, to select the complex conjugate pair of

- - o

solutions % () =%x(%) X(®)=x*(7). 1f

x(T+1) =8y% (v) + 82" (1),

}
i
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then, obviously,

Xt~ D =afx (v) —aix* ().

In this case g, =aj

and

chl= % (@, —ag)-
value chl as the sum of two complex conjugate numbers, is real.
Consequently, the roots of characteristic equation can be only real

or only complex conjugate.

According to expression (2.86), A,A,=1,

or

M=A A= . (2.87)

Thus, there is an only pair of the linearly independent solutions of

the equation of Mathieu-Hill, which satisfies the conditions

@y (v~ 1)=Ag, (v); wﬂr+n=%wﬂﬂ- (2.88)

This confirmation is called the Floquet theorem. The fundamental pair
of the solutions of the equation of Mathieu-Hill, which satisfies
conditions (2.88), is called Floquet's functions. Floquet's functions

exactly are that chosen pair of the fundamental solutions, with the

-
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aid of which most simply are expressed any other solutions of the
equation of Mathieu-Hill. In particular, functions e#“ are to
Floguet's function the equation of harmonic oscillator (2.70).
However, the value/significance of Flogquet's functions for the
channels, which have periodic structure, is much wider. Subsequently
let us show that with the optimum focusing envelope of particles of
particles in the long channel is described by Flogquet functions of

this channel.
Page 85.

Floquet's functions in the general case are complex. If
moduli/modules of both Floguet's functions are limited in the time,
then the gener#l solution of the equation of Mathieu-Hill, since it
is the linear combination of Floquet's functions, it is stable. But
if the modulus/module at least of one function of Floquet unlimitedly
grovws/rises in the course of time, then the general solution is

unstable. From conditions (2.88) it follows

g (t—1) - A @ (1),
1
gzlt—1 - - ®(V) .

Hence it is apparent that the general solution is always stable, if

A =1 But if A s l.then one of the moduli/modules unlimitedly

grows/rises and the general solution is unstable. According to the
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condition the cases of multiple roots let us exclude. Let the roots
of characteristic equation be real; then |\l and the general solution
is unstable. When the roots of characteristic equation are complex
conjugated, then, according to expression (2.87), [Nkl and the general

solution is stable.

The roots of characteristic equation (2.86) take the form

A=chl+ |y chi/—1=et'. (2.89)

Parameter ; is called the characteristic index of the equation of

Mathieu~Hill. Let

l=k+ip. (2.90)

Then
ch(k+ip)=chkcospy—ishksinp.

since chl - value real, are possible only the two cases.
1) u=+-nr; l=k+-inr, where n - any integers.

In the case

M=(~1)"et A=(—=1)"e"
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The general solution is unstable: |A|#1. Depending on the values of
the parameters, which are determining function Q(r), the equation has
an infinite set of unstable regions to each of which corresponds the
specific value/significance n. To real roots it corresponds
chi > 1.
2) k=0, [=iu.
The general solution is stable: h=et*. . =1. The parameter u can be

represented in the form p=p + 1%, where O<u<ana. Then
A= (—1)"e's, Ao =(—1)"e's.

Page B86.

To each value/significance n corresponds the specific range of change
in the parameters of function Q(r), for which the general solution is

stable. Stability condition is the inequality

ehli <1, (2.91)
When both cases occur simultaneously:

= 4 inn,

then ch1=+-l and characteristic equation (2.86) possesses multiple
root. The values of characteristic index indicated answer stability

limits.
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Let us present Floquet's function as follows

@ () =eSF (1) @a(3)=e""TF, (7). (2.92)

We have

T = D =etvDF (v 1),

At the same time, according to expression (2.88),

@1 (T— 1) =4p, (v) =ele!"F (v).

Hence
F (x4 1)=F(1). ﬁr

Of functions F,, F, - are periodic, with the period Ar=1, i.e., with

the period of function Q(r).

Let us examine the solutions of the ecuation of Mathieu-Hill in
the unstable regions. Substituting in equalities (2.92) expression

for l (2.90), we obtain

P () =eMU (1) @2(7)=e~"U; (1), (2.93)

where

Uy (v) mexinatF, (1),
U, (t) me¥inatE, (1), (2.94)
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Functions (2.94) - periodic. The frequency of these functions with
even n coincides with the period of a function Q(r), and with odd n
it is twice lower. Actually/really, cyclic period of a function
F,(r), F,(r) is 2m; cyclic period of a function e”™ 1is equal to n=.
Therefore with even n in the period Ar=1 is placed the integer of
periods of function e*% . With odd n the integer of periods of
function e"™ is placed only in the interval Ar=2. As it is possible
to show, in the unstable region always it is possible to select the
arbitrary complex factors of conversion (2.80) so that Floquet's
functions (2.93) wouid be the real functions of time. Let us
introduce instéad of functions (2.94) other two real functions with

the aid of the relationships/ratios:

Uity =g(t) cos D (1);
U, (t)y = (t)sin® (7). H

Then the general real solution in the unstable region will take the

form

X (1) =@ (%) [ Ae*® cos D (1) + Be-*¢sin ® (1)). (2.95)

Page 87.

1f initial conditions correspond A=0, then particular solution is
stable. In all remaining cases particular solutions are unstable.

Function p(r) is periodic with the period Ar=1 or Ar=2 depending on
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parity n. Phase change F in the period of solution Ar=1 or Ar=2
composes integer 2n. The increment of oscillation buildup of the
unstable part of solution (2.95) is a constant value and is
determined by the characteristic index of the equation of
Mathieu-Hill. Solutions in the unstable region are important during

the investigation of parametric resonances.

During the analysis of transverse vibrations basic interest they
will present solutions in the stable regions, or, is more precise, in
the first stability region, which corresponds n=0. In the stable
region Floquet's functions always can be selected complex conjugate.
In fact, let i:==xal:==x'- In this case a, =u4],, Utilizing expression

(2.82) instead of general/common/total conversion (2.80), we obtain

¢ =4, ;’:x B bt ITH )

dye S

VO N
Q=5 (x* +2 X) )

In the stable region ),=2? SO0 that bracketed expressions are complex

conjugated. Selecting B:=A4. we have
@y (1) =Q () ™M @, (T) =@ (¥) e~
In accordance with the Floquet theorem

Q(t 4 1) etz +1) = eilg (1) ei®(¥),

e(v+1)=0(7);
D(t+1)—D (1) =p.
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The modulus/module of Floquet's function in the stable region - this
is the periodic function of time with the period Ar=1. The phase of
Floquet's function in each period Ar=1 grows/rises by the constant
value u, which does not depend on the reference point of period. Any
real solution of the equation of Mathieu-Hill in the stable region
can be expressed through phase and modulus/module of Floquet's

functions

x (1) = AQ () cos [@ (v) 6. {2.98)

Thus, if the phase of solution is Floquet's phase, then the amplitude

of solution - periodic function of time with the period of a change

in the coefficient of equation. Equalities (2.95), (2.98) - the
simplest expressions for the general solutions of the equation of
Mathieu-Hill. The dependence of modulus/module and phase of Floquet

on the time is given in Fig. 2.10.
Page 88.

According to the general condition for the standardization of complex
conjugate solutions (2.65),

e

']
de

P~ =2 (2.99)
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Floquet's functions are completely determined, if is calculated the
modulus/module of function, since in accordance with expression

(2.68)

<
d
mm=§g—§. (2. 100)

0

Since the modulus/module of any complex solution satisfies equation
(2.69), then the modulus/module of Floquet's function is the periodic
solution of this equation. Is given below the method, which makes it
possible in certain cases to immediately find initial conditions for
the periodic solution. But if initial conditions for the periodic
solution cannot be determined sufficiently simply, then equation
(2.69) is necessary to decide in electronic computer the method of
successive approximations, attaining the cocincidence of values of
modulus/module and its first-order derivative at both ends/leads of

the period.

Expression (2.98) describes, in particular, the trajectory of
individual particle in the strong-focusing channel. In this case the
parameter u - phase change of transverse vibrations in one period of
focusing field. The instantaneous frequency of transverse vibrations

let us name/call rate of change in Floquet's phase:

a0
.= (2.101)
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Let T@__time, for which the particle flies one period of the

focusing field:

To=—-. (2.102)

Uy

Then

(2.103)
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Fig. 2.10.
Page 89.

Let us introduce also the concept of the medium frequency of

transverse vibrations in the period

t4+Tg

Q,=-~l— { o nde. (2.104)
¢ Ty |

When 71,-const instantaneous frequency proves to be the periodic
function of time, and medium frequency - by a constant value.

According to expressions (2.97), (2.100), 4

1 p
T -
B= S—E,—-. (2]00) !
T
Hence
Q,=?“o— . (2.106)

i

From equality (2.106) it is evident that the parameter u can be also
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defined as the average (cyclic) frequency of transverse vibrations to

scale of time r.

Let us fix the moment/torque of time 7, and will examine
discrete/digital points to the trajectories, distant behind each
other to the integer of periods. After the n periods

Q(Ty—n) =0Ty
O(1,~n)=D (1)) — pn.
Discrete/digital points lie/rest on the sinusoid

X (Ty+ 1) = AQ (1) cos [un — D (1) — 8], (2.107)

frequency of which is equal to the medium frequency of transverse
vibrations. The amplitude of sinusoid in expression (2.107) depends
on the chosen phase of period r,. Amplitude has the greatest
value/significance, if point r, corresponds to the maximum of
Floquet's modulus/module, and the smallest value/significance, if 7,
it answers the minimum. Particle trajectory is placed between these
two extreme sinusoids. From the qualitative considerations about the
work of quadrupole lenses it is obvious that the maximum of Floquet's
modulus/module falls in the focusing section of pefiod, and the
minimum - to that defocusing. The parameters of the strong-focusing
channel are usually selected by such that the stability of

trajectories would be provided in first region (n=0). In this case

the medium frequency of transverse vibrations considerably lower than
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repetition frequency of the focusing structure and particle
trajectory is the "slow" sinusoid, to which are superimposed "rapid"

oscillations with the period of the focusing field (see Fig. 2.5).
Page 90.

Some goals, connected with the parametric excitation of forced
oscillations, by modulation of frequency, by the oscillations of the
membranes/diaphragms, and others can be brought under the specific
simplifying assumptions to the particular form of the equation of
Mathieu-Hill

R+ at(a —2gsin2a7) x =0, (2.108)

to called equation Mathieu. The coefficient of the equation of
Mathieu is the harmonic function of the independent variable. The
form of writing of the equation of Mathieu (2.108) is selected here
in such a way as to retain the designations of coefficients, accepted
in book [59]. Equation (2.108) describes also particle trajectories
in the strong-focusing channel, if the gradients of focusing field
are distributed along the axis according to sinusoidal law [60]. The
solutions of the equation of Mathieu are studied most fully. Fig.
2.11 shows the regions, which correspond to the solutions of the

equation of Mathieu with different character of stability [53]. The

regions of stable solutions are shaded. In the unstable regions
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dotted line noted some lines of the equal values k. Unstable regions
are arranged/‘'ocated about values of a=n?. Since the cyclic
modulation frequency of the parameter in equation (2.108) is egqual to
2n, therefore, parametric excitation takes place when the average
frequency of the oscillating system is close to half the integral
values of the frequency of the parametric effect. This condition of
parametric resonance is correct for the general case of the equation

of Mathieu- Hill.

o . <AOPNN R il 903, T B
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<

Fig. 2.11.

Page 91.

§2.4. Beam of particles in the strong-focusing channel.

During the identification of the parameters of the
strong-focusing channel must be first of all provided the stability
of trajectories. For all further calculations of the focusing
properties of channel are most interesting not individual particle
trajectories, but envelope of particles, since precisely they

determine the sizes/dimensions of the focused beam at each point of

channel. It is obvious that the sizes/dimensions of beam in the
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channel must be connected with the acting focusing forces and with
the value of the phase volume of beam. The behavior of beam in the
channel depends on initial entrance conditions. Therefore direct
problem of calculation consists in the determination envelope of
particles from the initial conditions in the assigned focusing
fields. Of no less significance is the inverse problem which is
called the goal of the agreement: to determine initial conditions,
with which the beam in the channel will have assigned optimum
envelopes. Speaking about the initial conditions for the beam, we
have in mind size/dimension and inclination/slope of envelope in each
of the transverse planes or other values, with them unambiguously

connhected.

The phase volume of beam can be measured by different methods.
One of tbe possible methods consists of the follo&ing: with the aid
of the eyelet in the diaphragm they cut out the part of the beam,
which corresponds to some values of transverse coordinates, and
determine - on the disagreement of particles in drift space after the
diaphragm - the scatter of path inclinations in the cut out part of
the beam. If we consecutively/serially move the opening/aperture of
diaphragm over entire beam section, then it is possible thus to find
complete four-dimensional phase volume and distribution of phase

density in it [61, 62].
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Since into the equations of transverse vibrations is introduced
the dimensionless independent variable r, it is convenient to use
phase plane with the coordinate axes x, dx/dr. The derivative dx/dr

is connected with the path inclination with the relationship/ratio

dx dx (2. 109

Let be known the projection of the transverse phase volume of beam on

plane x, dx/dr and this projection is limited by ellipse (Fig. 2.12)

ax’+b<dx> --2cx————-l (2.110)
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Fig. 2.12.
Page 92.

Designations far the semi-axes and the angle of the slope of ellipse
are clear from Fig. 2.12. The area, occupied with the projection of

phase volume, let us designate nF,, where

F°=MIV (2.111)

there is a product of the semi-axes of ellipse (2.110). To avoid
confusion let us name/call value F, the reduced volume of beam. If E
- emittance of beam (2.3), then, according to equations (2.109),

(2.111),

F,=SE. (2.112)

Combining equalities (2.4) and (2.112), we obtain also
connection/communication between the transverse phase volume of beam

(2.2) and reduced volume (2.111)

4

1 el (2.113)
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Since transverse phase volume - value invariant, then in the linear
accelerators when Tg=const reduced volume in the nonrelativistic
approximation/approach is also invariant. It is easy to show,
converting equation (2.110) to the canonical form, that the reduced
volume is connected with the coefficients of equation (2.110) with

the equality

"\ = 1 . 2.114)
Fo Y ab—c3 (

Let us return now to the equation of individual trajectory,
expressed through modulus/module and phase of the arbitrary pair of

complex conjugate fundamental solutions (2.67),

x=Aocos (v+6);
L =4 Lcos(p+O)—Lsin(w+6). (2.1

Expressions (2.115) are the equations of phase particle trajectory in
the parametric form. Modulus/module and phase of fundamental solution
are assumed the assigned functions of the parameter of equations r.
Valueé A and @ depend only on initial conditions and are constants
of motion. Eliminating from equations (2.115) trigonometric

functions, we obtain expression for constant of motion A?

. o :
A’=<U dt dt +< +) (@.116)
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To each value/significance of constant of motion A? at current time 7

corresponds on plane x, dx/dr certain ellipse.

Page 93.

Let us select initial conditions for the modulus/module o(0), do/dr
(0) and constant value A in such a way that ellipse (2.116) would
coincide at zero time with the boundary of phase volume (2.110)

[
Sr=b 2.117)

I do

Then to all particles, that lie on the boundary of phase volume, will
correspond ohe and the same value/significance of constant of motion
A and at any following moment of time ellipse (2.116) will coincide
with the boundary of phase volume. After substituting expressions

(2.117) into equality (2.114), we will obtain

A= |'F, (2.118)

Hence

0(0)m VBFy 42 (0)= —<T5- (2.119)

o (D)

Expressions (2.119) can be represented also in other form, if we

Ca st e
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replace the coefficients of equation (2.110) with semi-axes and by

the inclination/slope of the boundary ellipse (see Fig. 2.12):

W N .
ag(0)= l/%—cos*a—{»-m-snn-a:

(2.119a)
do I M

T(O)=m \T“%) sin 2a.

On envelope of particles lie/rest the particles, which have at the
given moment/torque maximum misalignment. Since ellipse (2.116) with
satisfaction of conditions (2.118), (2.119) always coincides with the
boundary of phase volume, we are guaranteed, that to any
value/significance of phase 6 corresponds the rebresentative point
of any particle of beam, which lies on the boundary. For the given
moment of time always will be located the particle with phase ©. with

which cos (V--® =1 Hence, according to expressions (2.115), (2.118),

it follows that envelope of particles takes the form
r(v) =V Foo(v). (2. 120

Thus, envelope of particles in each of the transverse planes is
proportional to the modulus/module of certain complex solution of
linear equations of motion. Proportionality factor with the
standardized/normalized modulus/module - this square root of the
reduced volume of beam. The corresponding modulus/module is the

solution of equation (2.69) under initial conditions (2.119a),

determined by form and location of the ellipse, which limits the

projection of phase volume.
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Introducing expression (2.120) into formulas (2.69), (2.11%a) we

directly obtain equation and initial conditions for the envelope

a

adr Flx .
?;"*'Qx(f)rx— 73 =U;

x

re(0)=F Micostas+ Visin®ay 2.121)
dr 1 2 R
T:—(O)=m(M,—Ni) sin 2ay.

For plane YOZ occur the same equations with the replacement of index.

1f the phase volume of beam has finite quantity (F,#0), then
equation for the envelope (2.121) does not coincide with the equation
of trajectory (2.53). Consequently, in the beam with the final phase
volume there is no particles whose trajectory would coincide with the
envelope. "boundary particle" can exist only in the beams with_the
zero phase volume. As is known, hypothesis about the existence of
boundary particle brings to so-called Brillouin flows [63]. Hence it
is apparent that the Brillouin flow corresponds to particle motion in
the beam where there is no disordered scatter of velocities [64-66].

Let us note that when deriving the equations (2.121) nowhere was

utilized the assumption about the periodicity of functions Q: (1), C, ().

This fact has the vital importance in the examination of beams with

the noticeable space charge.
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Let us assume that the phase volume of beam by the previous
optic/optics is converted to the input in such a way that initial
conditions (2.119a) would answer the periodic solution of equation
for modulus/module (2.69). Then envelope of particles (2.120) is

proportional to the modulus/module of Flogquet's function

r(v) =V Fe (v (2.122)

Envelope of particles in each of the transverse planes prove to be

- periodic functions with the period, equal to the period of focusing
field. This beam is called matched with the channel. The ellipses,
which limit the projections of the phase volume of matched beam, let
us name/call Floquet's ellipses. The coefficients of equation

(2.110), which is determining Floquet's ellipse, these are the

periodic functions of the time

= (&) +w ]

b= 0% (2.123)

o
dv °

c=———0

Fy

Page 95.

To each phase of the period of focusing field 0grt,<! corresponds

its ellipse of Floquet, unambiguously connected with the parameters
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of the focusing channel p(r,), dg/dr(r,). Floquet's ellipse
tests/experiences the identity transformation through the period of
focusing field. The most characteristic phases of period - points at
which the modulus/module of Floquet's function has an extremum. At
these points first-order derivative of modulus/module is equal to
zero, so that the coordinate axes of phase plane coincide with the
axes of Floquet's ellipse. At the point of the maximum of FlogQuet's
modulus/module the envelope has maximum value, and the instantaneous
frequency of transverse vibrations (2.103) is minimum. Fig. 2.13
schematically presents the envelopes of matched beam in two mutually
perpendicular planes, beam sections and ellipses of Floguet at some
points of period. At points the II and IV moduli/modules of Floquet's

functions have an extremum.

Let us substitute into equality (2.122) the instantaneous

frequency of transverse vibrations (2.103)

F
r(r)=‘/r¢T‘:m—. (2.124)
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Fig. 2.13,
Page 96.

The envelope of matched beam at each point of period is inversely
proportional to square root from the instantaneous value/significance
of frequency. The same relationship/ratio remains valid, if
instantaneous frequency in the assigned phase of period adiébatically
changes along the axis of channel. Replacing in expression (2.124)

the reduced volume of beam with the value of transverse phase volume

{2.113), we obtain the following connection/communication between the
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instantaneous frequency, the semi-axis of section and the phase

volume of the beam
V= % ya,r?, 32.125)

Channel capacity let us name/call a maximally possible phase volume
of the matched beam, still passed by channel. Generally, the
fluctuation of particles in the channel - this is the sum of the free
oscillations, which depend on initial conditions and determined for
the ideal channel, and forced oscillations, caused by errors focusing
in the system. Let a - a radius of that part of the aperture which is
abstracted/removed under the free fluctuations of particles. The
semi-axis of section reaches maximum value/significance / = "waxc

when ©- = @, wy. Matched beam is passed without the losses through the
channel, if /fwaxc<da. Hence we obtain formula for the channel

capacity:

V= %" YOr wuna?. ‘ (2.126)

With the given aperture of channel and energy of particles the
channel capacity is the higher, the greater the minimum instantaneous
value/significance of the frequency of transverse vibrations in the

period of focusing field.

Channel capacity they frequently prefer to characterize with the

value of acceptance, equal maximum to the permissible emittance of
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the matched beam, still passed by channel. The acceptance of channel
is connected with the capacity with the relationship/ratio, analogous

to expression (2.4):

A= (2.127)

'S
By *
After using expression (2.103), let us represent capacity and

acceptance of channel in the form

V., = Y ..a’;

T oQR e

A=—1_ g 2.128
"’TQQ;anc : ( ' )

Hence it follows that in the linear accelerators when 7T, =const :he
channel capacity in the nonrelativistic approximation/approach :is5
invariant, and in the relativistic approximation/approach it siowly
increases proportional to Lorenz's factor. The acceptance of channel
in the linear accelerators when 7¢ = const depends substantially on
the energy of particles and is inconvenient as the characteristics of

the focusing system of accelerator.
Page 97.

In the circular accelerators is always kept constant the length of
the period of focusing field S =T, so that acceptance does not
depend on energy of particles. Therefore in the theory of the

circular accelerators they prefer to use the concept of the
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acceptance of channel and respectively by the emittance of beam.

Let us assume the transverse phase volume of beam at the
entrance of the strong-focusing channel is limited by the ellipse,
which does not coincide with Floquet's ellipse the beginning of
channel. If they are known to Floquet's function for this channel,
then the envelope of unmatched beam can be found without the
integration of equation (2.69). Let us examine certain complex
solution of equation of motion whose modulus/module the unknown

function o(r7),

x (1) = 0¥ = ¢, @ (V) + 2" (1), (2.129)
where c,, ¢, - complex constants:

¢ =Ceiny  ca=C,eivs, (2.130)

Since function x(tr) is determined with an accuracy to constant phase,
we can assume y,=y; v,=0. Moduli/modules C, and C, are connected with
the the identical standardization of all complex conjugate solutions

of equation of motion. Since

. ) ‘ L ]
X X ] N o ! ¢
ax dy* |\ = (crer—c2€2) ©ode  dg*
dt dv | v dtdt

then

a—Cl=1. (2.131)
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Further, substituting formulas (2.129), (2.130) in the expression for

the modulus/module

we obtain

ag(tv)=¢(r) Y CT =C: ~2C,C,cos [2D (1) — y]. (2.132)

Thus, the envelope of unmatched beam is the product of periodic
processes with two frequencies: with the repetition frequency of the
focusing structure and with a double frequency of transverse
vibrations of 24, or on the average during the period of focusing
field -%%-If the relation of these frequencies is great, then the
envelope of unmatched beam has maximums in each period of structure
(Fig. 2.14). These maximums subsequently let us name/call tﬁe local
maximums éf envelope. But if both frequencies are sufficiently close,

then in some periods of focusing field local maximums can be absent.
Page 98.

At those points of the channel where

cos(20+y)= %1, (2.133)
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we have

o(v)=(Cy = Cy)e(v).

Since C,>0; C,>0, then C,-C,<C,+C,. From condition (2.131) it follows

that

Cl'-,-Cg> 1;
0<C—Ci< 1.

Virtually both frequencies of envelope never are located in rational
sense; therefore in the sufficiently long channel to point (2.133) it
is necessary the maximum of Floguet's modulus/module. At this point

the envelope of unmatched beam will be greatest

Ouaxe = (Cy + Cz) Quaxc- (2.134)

The maximum of envelope (2.134) let us name/call principal maximum.
The local maximums of envelope oscillate, having approximately a
period, which corresponds to the double frequency of transverse
vibrations 2p/T,. The greatest values of local maximums in each period
of their oscillations are approximately equal to principal maximum.
Therefore latter/last maximum can be the adequate/approaching
practical criterion for evaluating the sizes/dimensions of unmatched
beam in the strong-focusing channel. From equality (2.134) it follows
that the principal maximum of the envelope of unmatched beam always

exceeds the maximum of the envelope of matched beam with the same
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value of transverse phase volume,

The obtained result has simple geometric interpretation. Since
discrete/digital points in the trajectory, distant for the period of
focusing field, lie/rest on sinusoid (2.107), it is obvious that the
phase trajectories of the representative points, examined/considered
through the period coincide with Floquet's ellipses. Let us describe
Floguet's ellipse around the phase volume of unmatched beam (Fig.
2.15). For the certainty let us examine the discrete/digital points,

which correspond the maximum of Floquet's modulus/module.
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Fig. 2.14. Fig. 2.15.
Page 99.
The phase volume of unmatched beam will rotate within the described H

ellipse of Floquet, so that the semi-axis of section will fluctuate
with the double frequency of rotation. The maximum size of unmatched
beam proves to be by the same as the size/dimension of matched beam
with the phase volume, which corresponds to the area of the described
ellipse of Floquet. The area of the described ellipse of Floquet can

be named/called the effective phase volume of beam.

Let us determine the principal maximum of the envelope of
unmatched beam‘under the assigned initial conditions ¢(0), de/dr (0)
(2.119a) and with the assigned functions p(r), dp/dr (7).
Differentiating the square of expression (2.132) and assuming/setting

r=0, taking into account expressions (2.131), (2.132) we obtain three
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equations for definition three the unknowns C,, C,, 7¥:

‘ a do do -
ZC,CZ siny = _-Q— a 4‘:{{_ —Q it =0 "

C:~C- 20, Cocosy =
C:—Ci=1.

Whe w~ (C,~C)*=3. (2. 136)
Then system of equations (2.135) is reduced to the form

=9 (2.137)

Eliminating vy from equations (2.137), we obtain

t_Ct-1=0, {2.138)
where
_( 8N _RNE_ T e o do e 2,130
C_\_Q_/ T e, 0w dr | =0 (2159

I1f beam is matched with the channel, then C=2 and £,=f{,=1. Under any
other initial conditions ¢,>1; £,<l. Principal maximum of the

unmatched beam

Fuane = V_E»qFoQuauc- (2.140

The value of root {, >1 or unambiguously with it the connected value

of parameter C>2 can serve as the criterion of agreement.

e 8 R S R VS VRTINS
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Let us assume that the matched beam must have at the entrance of
channel a crossover: dp/dr(0)=0. Further let us assume that the
unmatched beam has at the entrance parallel envelope, but the

semi-axes of section differ from those matched. Then
_8N\Y L e\
C_\ 0 ”=o-r-< o >r-o'

From equation (2.138) follows

o (0) :

1 g, ‘ (V) n%“)(,(O)>Q(O)'
n = 9 o>

| A5 npr o (0) < e(0).

Key: (1). with.

Thus, for instance, maximum of unmatched beam exceeds the maximum of
matched beam two times, if a(0)=2p(0) or 0(0)=1/2p(0). Agreement to
always more easily rate/estimate, if a beam has at the entrance of
channel crossover. Otherwise the goal substantially is complicated,
since besides the section it is necessary to measure the angles of

the slope of envelope.

Let the entrance of the strong-focusing channel enter the
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unmatched beam, which reaches in the channel of radius a, equal to
the maximum permissible value/significance of the amplitude of free
oscillations. Then, according to expressions (2.122), (2.140), the
maximum size of matched beam with the same transverse phase volume is

equal to

a
Twaxc (cora) = —= .
|-

It is hence easy to find the phase volume of the unmatched beam

1
Vo= e YO, unsa? +

& -
Thus, the greatest transverse phase volume of the unmatched beam

which can be passed through the focusing channel, is connected with

the channel capacity as follows

Vu....o==—‘§1"‘-- 2.141)

Consequently, the best beam focusing in the channel is reached
when beam is preliminarily prepared by the system of matching lenses.
For determining the matched initial conditions it is necessary to

know the phase volume of beam and function of Floquet of the channel

r(0) = | Foe (0); —%— (0) = VF, 5L (0). (2.142)

Page 101.

Since values Fos- Ffoo during the conversions of phase volume remain
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constants, the goal of beam matching with the channel is reduced to

the transformation of four parameters of beam 4 o, j?a' j?i. or that
T T
the same, M, M, «,. «. Therefore a minimum number of independent

parameters of the matching chain/network of lenses in the general

case must be equal to four.
§ 2.5. Matrix method of calculation of Floguet's functions.

Above was explained the important role of Floquet's
modulus/module as the function, which describes the envelope of
matched beam in focusing channel [78]. The values of the
modulus/module of Floquet and his derivative at the entrance of
channel initially assign for the matched beam, which in the principle
gives the possibility to calculate the matching optic/optics before
the channel. Fioquet's modulus/module uniquely determines the
instantaneous frequency of transverse vibrations of particles and,
therefore, channel capacity vith the assigned aperture. This makes it
possible to formulate the requirements, presented to the phase volume
of beam. But if the phase volume of beam is assigned, then Floquet's
modulus/module determines the maximum size of the matched or
unmatched beam in this channel. Of greatest interest are the values
of the modulus/module of Floquet and his derivative at the entrance

of channel, and also the value of Floquet's modulus/module at the

point of maximum.
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For calculating Floquet modulus and its derivative at any
assigned point of period it is convenient to utilize an apparatus of
matrix algebra [67]. let us divide the period of focusing field in
the sections, for each of which the particle motion is described by
its linear equations (accelerating gap, quadrupole lens, idle
gap/interval, etc.). Solution of equations of motion in each section,
determined under the arbitrary initial conditions, gives the
matrix/die of linear transformation for displacement and path
inclination from the beginning toward the end of the section.
Multiplying the matrices/dies of individual sections, we obtain the
complete matrix/die of period whose elements/cells are connected with
the values of Floquet functions and do not depend on the selection of h
particular solutions. This makes it possible to avoid the basic
difficulty of calculating Floquet's modulus/module from nonlinear
equation (2.69), which consists in finding of initial conditions for

the periodic solution. The task of determining the matrices/dies is

simplified, if the fields of quadrupole lenses are approximated by

"square wave".

Let us examine the arbitrary real solution of equation of

motion, expressed through Floquet's functions [68]:

£ (¥) = by, (1) + b2 ().
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]

In the stable region the functions of Floquet and respectively
arbitrary constants are complex conjugated, while in the unstable
region -~ actual. Connection/communication between the values of
functions x, dx/dr at the moment of time r and the values of

arbitrary constants can be presented in the matrix form

’ . A b N

(f)é i cp')(‘). (2.143)
X 4% 492 )1y,
Jar v dr o

Let us solve matrix equation (2.143) relative to the column of the

arbitrary constants

b [ @ @\ x ‘
b)= doy do. e (2. 144)
2 v Tdv J. \dv <

If we tow write equation (2.143) for the moment/torque of time 7+l

and to replace the column of arbitrary constants with the right side

of equality (2.144), then we will obtain

x Ty Ty x
dx = T T i | (2.145)
?'— T+1 iz L 4 dv 4
T, T 9 -1
1 faz) 1 @2 P P2 (2. 146)
7., T dg, _dy, a9, do,
aia dt- Td J \Tdv &

T

where
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Let us assume t=n+r', where n - integer, and 7' - any phase of
period, which lies within limits of O€r'<l. Since the initial
equation of Mathieu-Hill is invariant relative to transformation
r=n+7', then with any n can be selected one and the same pair of
characteristic functions. Consequently, the matrix/die

T= (T“ T*=) (2.147)
Ty To

does not depend on n. Matrix elements (2.147) - the function of the
selected phase of period 7. Matrix/die (2.147) is called the
matrix/die of the period of the focusing field, which begins from the
chosen phase 7'. Determinant of matrix/die in the right side of

equation (2.143) - the Wronskian determinant of Floquet's functions

! . |
0P _w.

| Py P2 3

For the reciprocal matrix occurs the relationship/ratio

(‘P:%) I
Pt P2 /v |

Page 103.
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According to expression (2.146),

Wi—1)
T =~

According to the theorem about the constancy of Wronskian determinant

T =i

T Tooe ToToy = 1. (2. 145,

Let us expand/develop matrix product (2.146). Utilizing the Floguet

theorem (2.88), (2.89), we obtain

=L eg 292 _emg, 44
Tu= [ \e% dt M e . l
il
Tin=— 5 q,§-5h{: l
¥ ! (2. 149
_ 2 dgy  dg,
Tu=vw & b ’
T 462 Jg
T"-—”_T‘ R fhar av ¥ J

Matrix elements of period - always real numbers. In fact, in the

unstable region, according to expression (2.90),
W=1; e=(—=1"e% shi=(—=1"shk,

so that all factors in expressions (2.149) are real. In the stable

region

W= —2i; shi=isiny,

whence it is directly evident that T,,, T,, are real. Formulas for

elements/cells T,,, I.,, contain in the parenthesis of a difference in
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the complex conjugate numbers; therefore T,,, T,, is also real.

From equalities (2.149) it follows that the sum of the

elements/cells of principal diagonal is equal %o

Tn"‘T::=2Ch[. (2. 15M
Hence
chl=-1 SpT. (2.130a)

From inequality (2.91) it follows that the stability of trajectories
in the strong-focusing channel is provided with satisfaction of the

condition
SpT < 2. (2.15h

In the region of stable solutions L=iu and equality (2.150) has the

form

cos;asr-!’—'-;lﬁ, 12.152)

where u - phase change of Floquet in one period of focusing field.




DOC = 82105202 pace A

Page 104.

In view of the fact that the matrix elements of period (2.147)
are connected with condition (2.148), only three elements/cells can
be determined independently. It is expedient to introduce three
independent variables, which are determining the matrix/die of

period, as follows:

cosp=_ri_i_f;__r2;
Ty, )
v= l/“r;' , (2.153)
sine=_Tu=Tlz2
2V =TTy

In the region of stable solutions parameters v, ¢ are real.
Specifically,, conditions (2.148), (2.151) lead to the inequality
(Tyy+T2)? = (Ty—Tn)* + 4+ 4T Ty <4,
or
—TiaTe > (To—Ta)".
Thus, in the stable region the elements/cells of nonmajor diagonal
always have equal signs, and sine on the modulus/module is less than

unity.

From equations (2.153) can be obtained the expressions for the
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matrix elements of the period through independent parameters of the

matrix/die
os (h—e) sinp
T“ = c_—'— ' T12 = .
cos e veose (2.154)
. _ysinw. _cosik—e)
Ty = — Cose Te= cos e

Let us connect the parameters of matrix/die v, ¢ with the
modulus/module of Floquet function of channel. Substituting
expressions (2.149) in the right sides of formulas (2.153) and taking
into account designation for Floguet's functions in stable region

(2.96), we obtain

]

. (2.155)
. do do \? { -1
Sma"""‘i?[(??) + | .

Of three independent parameters of matrix/die T one parameter -
constant value: u=const, and two others v(t), e{(t)— periodic
functions of the independent variable with the period Ar=1. Parameter
¢ is equal to zero at the points of the extremum of Floquet's
modulus/module. At the points of extremum the matrix/die of period is
simplified:

’ 1.
T=( cosp 5 sin p) . (2.154a)
—vsing cosp

Page 105.

According to expression (2.155),
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[~

tge = —

sy
-

veose o - . (2.156)

i 5 g
4D cos 120

Product vcose— the instantaneous frequency of transverse

oscillations to scale of time 7. To scale of time t
Wp = 12.158)

Channel capacity is determined by the minimum value/significance of
instantaneous frequency (2.158). At the point where frequency (2.158)

reaches minimum value/significance, ¢=0 and
v
Wr wyp = 73 . (2.139)
Here vy— value of parameter v in the middle of the focusing
gap/interval with e=0(T,=Ty).Subsequently for the convenience we
utilize dimensional (in scale of time t) and dimensionless (to scale

of time r) frequencies.

I1f the matrix/die of period is calculated, then means known the

modulus/module of Floquet and his derivative at the appropriate point
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of the channel:

T)= = .
A (2.150)
tge

aQ 3
et ’

dt (1= —

Let us examine based on examples the procedure of calculation of the
matrices/dies of period. in the channel of the type FOD (see Fig.
2.6) the accelerating clearance is located in the gap/interval,
situated after the focusing lens, and between the pair of the lenses,
structurally/constructurally united, is a section, free from the

fields.
Page 106.

At the length of the focusing lens the displacement and path

inclination undergo linear transformation
X X
. :'—'P(' ’
x‘ xo

where x,, i.-dx/dr(o) - displacement and path inclination at the
entrance, and x,, il - at the output of lens; P - matrix/die, which

characterizes the action of the focusing lens. After the accelerating

(hr() - (2);

where TI'— matrix/die of accelerating gap. Further particle passes

Cclearance




DOC = 82105202 PAGE 287

the defocusing lens at output of which we have

(i) =P(:A)2.—_PFP(E\).

3 0
where P - matrix/die of the defocusing lens. The period of focusing
field concludes according to the condition with idle gap/interval; at

the output of idle gap/interval the displacement and path inclination

*
have values x,, x,=dx/dr(l), moreover

(2= (2) (),

Thus, matrix/die the period of focusing field takes the form
T = HPTP. (2.161)

According to expression (2.161), the matrices/dies of sections are
multiplied in backward sequence - from the end/lead of the period at
the beginning. The matrix/die 6f the same period in the perpendicular
plane will be, obviously, that follows

T = HPTP. (2.161a)
Now let us assume that we deal concerning the channel of the type
FOF-DOD (see Fig. 2.6). Let the accelerating gaps be arranged/located
between the lenses of one sign, and idle - between the lenses of
different signs. Let us begin period from the middle of accelerating
gap. Then

T =T,,,PHPTPHPT,,. (2.162)

Index 1/2 means that is taken the matrix/die of half of accelerating

' gap. Analogously it is possible to compose matrices/dies for any

g

o s——
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other types of period. If the matrix product of individual sections
is symmetrical as, for example, in expression (2.162), then the
elements/cells of the principal diagonal of matrix/die T are equal,
so that at the initial point of period occurs the extremum of

Floquet's modulus/module.
Let us determine the matrices/dies of sections.

Matrix/die of quadrupole lens. Let us assume that at the length
of the section, occupied with quadrupole lens, there is no

accelerating field. Then, according to expressions (2.55), (2.56),

Q=S’$- (2.163)

Page 107.

Let us assume further that at the length of lens D the gradient of
focusing field - constant value. In this case of Q=const the equation

of motion (2.53) has in the focusing section a solution

x==Acos} Qt—Bsin} Qr;
= — AV Qsin ) Qe+ B} Qeos | Q.

where A, B - arbitrary constants. Let us assume at the entrance of
the focusing lens correspond r=0; the coordinate of output r=D/S.

Arbitrary constants are determined by initial entrance conditions
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At the output of lens we have

Xy = Xy COS P_'SVQ_ + ‘—Y% sin DL <
. B o (2.164)
X = —X) QsinD‘S Q—:—x,,cos —1Q
Value
K=Q_%2
let us name/call the hardness of lens. Substituting for Q its A
value/significance (2.163), we obtain the following expression for

the hardness of the lens

K=D‘/§, {2.163)

o p— T

In formula (2.165) all values to the right are measured in the system

of SI units. Hardness is dimensionless value. According to

expressions (2.164), (2.165), the matrix/die of the focusing lens

takes the form

D .
e cosK s sim K), (2.166)
--Sb’isinK cosK

In formula (2.165) the value of gradient is taken in terms of the

absolute value. Then hardness proves to be one and the same real
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value in plane X0Z and in plane YOZ. Fc:r the defocusing lens the

gradient has negative sign, and value K in matrix/die (2.166) should

be replaced by iK.
Page 108.

Since cos iK=ch K, sin iK=i sh K, then matric of the defocusing lens

is equal to

/

=\ sk (2.167)
(-SglshK chK

D
chK ﬁShK)
Matrix/die of idle gap/interval. At the length of the idle

gap/interval h of field are absent: Q(r)=0 and K=0. Let us pass in

matrix (2.166) to the limit with K-»0. Assuming/setting D=h, we

obtain

I h/S |
H-(o 1). (2.168)

Matrix/die of accelerating gap in the system with the traveling wave.
Let us examine the case when between the lenses particles are
accelerated in the traveling wave. This case can be encountered in
the linear accelerators to the superhigh energies. Within the
accelerating gap according to the condition there are no focusing

fields; therefore, according to expressions (2.55), (2.57),
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Q(7) ='§?‘O%YT- %Ez—z (v).

Let us replace derivative of field with expression (2.12). Takirg

into account formulas (1.70), (1.82) we have
Q)= —2x2 3N "2\ sing
BA ./ v w, sme, "

Further let us assume that at the length of the accelerating gap
between the adjacent lenses it is possible to disregard a change in
the phase of particle ¢. Then Q=const. Let us introduce designations
for the following combinations of the parameters which will be

frequently encountered subsequently:

W/ S N1 /QN®
Y.=J’l"&-p—x/,' \_«T/\ . (2.169)
V=Ye shes - (2.170)

Value 7 let us name/call the factor of defocusing. The equation of
transverse motion for the particle with the phase ¢ in this

accelerating gap will take the form

o
5 —2vx=0. @2.171)

Equation (2.171) is reduced to equation (2.13), if we assume ?=9,.

and to switch over from variable/alternating r to the dimensional

time t.
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The matrix/die of accelerating gap at the positive value/significance

of the factor of defocusing takes the form
wlY N R
Lh“"—*—“ ——= sh —=*
r= S LR 2172

Ty i) 3y
\l =Y :h S

1y
w Ay
hl

where } - length of accelerating gap. If particle moves in such phase
of travelling waves, in which the factor of defocusing is negative,
then accelerating field focuses; hyperbolic functions in matrix/die
(2.172) convert/transfer with this kV circular ones. The determinant
of matrix/die (2.172) just as the determinants of matrices/dies
(2.166)-( 2.168), is equal to unity. It is possible to show that the
equality to one of all determinants of matrix of transformation - a

consequence of Liouville's theorem.

For the high energy particles the frequency of longitudinal
vibrations is small, so that the factor of defocusing (2.169) is
substantially less than one. In this case matrix/die (2.172) is
possible with accuracy sufficient for the practical purposes to write

in the form 4
) (2.173)

r={ . °|

Any matrix/die, whose elements/cells of principal diagonal are

identical, and determinant is equal to one, it can be represented in
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the form of the product of following three simple matrices:

Ty Ty 10\ /1 a .
(Tﬂ T“) (01)(b 1)(0)\ (2174

Producing multiplication and equalizing equivalent components of

matrices/dies, we obtain

Let us decompose on the factors of type (2.174) matrix/die (2.172):

1 Wy, s O o 1m
a..‘-Q_Yth =t b= 2ysh LA (2.176)

With y<<1 we have a=1/2$, b=2y(1/5) or

Fa(l 1/25)( ‘l 0)(1 s,

Page 110.

Thus, if y<<1, then the action of accelerating gap is reduced to the
action of two idle clearances by length 1/2 and to the action of the

middle refracting plane with the refractive index of the trajectory

Ax
X

@.177)

| ~

=2y

Ratio S/ - number of accelerating gaps, which fall for one
period of focusing field. Let us exclude the focusing lenses. Then
the general/common/total effect of defocusing, connected with

accelerating field, is characterized in the period only by the

v
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sequential action of matrices (2.172)

T —
ch 1}2-\’ %1 sh {1 2y

r,= b2y S
1 2ysh L{ggy cn B A

In accordance with the theorem of Sylvester [68]

 ch 2y ! 5e
r’=( ¥ 2y ] Sh]Z\).

o _* (2.178)
\} 2ysh } 2y ch} 2y

If the factor of defocusing is sufficiently small, then
1 13
r'=(2v l)'
Hence we see that the refractive index of trajectory at the length of
one period of focusing field is numerically equal to doubled value of

the factor of defocusing.

Matrix/die of accelerating gap in the system with the standing
waves. Let us examine for the concreteness of that accelerating the
clearance between drift tubes. The calculation, given subsequently,
can be transferred to any accelerating system with the standing
waves. We approximate t!=z accelerating field in the clearance by
"square wave": let us assume that the longitudinal component of field
at the gap length is constant, and within drift tube abruptly it
drops up to zero. In view of the uniformity of field in the clearance
function (2.57) is equal to zero out of the clearance and inside it,

and entire effect is created only at the end-points at the entrance

and at the output of clearance. The matrix/die of the accelerating
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clearance can be represented in the form of the product of three
matrices/dies. Outer matrices/dies describe refraction of trajectory
at the entrance and at the output of clearance, and average
corresponds to the idle gap/interval with a length of g:

Page 111.

Hence

[V

£

! Yi R
r- ( s ) | <,
Yt — Yo — '5 Yive 1= ’:g‘ Yo/

o

-—

Let us find the refractive indices of trajectory v,., v.. Regarding,

at the entrance of the clearance

7 dx
cdt o

1
Y1=T-3

Let us integrate equation of motion (2.53) along the period of
reentry, bearing in mind that in the period of reentry the particle

displacement from the axis does not manage to change

-g.28

AE =~ —x \ Q (1) d-. (2.180)

In integral (2.180) the variable/alternating r is counted off from

the geometric center of clearance. Substituting in integral (2.180)

function (2.57), we obtain




P
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== S OE
Y1 28062\'3 J 02’ az,

-

whence

S k4
Y!;_-__Tje"ldf\.nf:,\‘g( . RRESE

For the second refractive index occurs the analogous expression
Vo= g Bl (2 182y
th .

I1f{ synchronous phase in the absolute value exceeds 8-10°, then it is
possible to disregard the effect, connected with a change in the

particle speed in the clearance. Then

E;(Z):%EOCOS ,g—fr ' (2.183)

where E, - middle field; L - length of the period of the accelerating
structure; ¢ - phase of standing wave at the moment of the time when
particle passes the center of clearan;e. Let us substitute expression
(2.183) into equalities (2.181), (2.182) and moreover for the factor
of transit time (1.28) the approximation formula

ag

sin —=>=

T o ﬂ:" . L (2.184)

pA

Page 1l12.

Under the assumptions
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g
oy L AT
\’l \ S < "
sin —"f—sinzp
, cos \/q:+;¥\;
Y2=—Y? ~1 B’“,
R sin %Sin(p

indicated The parameter 5 is determined by expressions (2.169),

(2.170). Hence

. L
Yitve=2y 5.

. 4 N2 . . .
When -g) «1! we have ‘%th@:l and the matrix/die of accelerating

clearance (2.179) is reduced to the form
. L e
F — s
= . : (2.185)
1f the accelerating clearance sufficiently narrow, g/S<<1, then its

action is reduced only to the refraction of the trajectory:

o 186

Ratio S/L - a number of accelerating clearances in one period of the

focusing field. As it is easy to show,

1 0\ ;| o
2yg 1 =(2y 1)'

Thus, and in the case of accelerating the beam in the field of

standing waves the factor of defocusing (2.170) characterizes the

complete defocusing of beam by high-frequency fieid in period S.
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Let us note that at the length of accelerating gap function
Qu(m (2.57), entering the equations of motion (2.53), can be
approximately replaced with average value, constant by the length of

the gap/interval

£}

Oa’-g‘ \ Qu(7)dr. (2.187)

&S

Then equations of motion in the section of accelerating gap will

contain the constant coefficient:
d’. —_
T+ Qux=0. (2.188)
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Actually/really, from formula (2.187) it follows
L .
Q=—2y . (2.189)

so that the solution of equation (2.188) coincides with the result,
obtained above. By equation with the averaged coefficient it is

convenient to use when is not utilized matrix symbolism.

Into the product, which is determining the matrix/die of the
period of focusing field, can enter matrices of several accelerating

gaps. If the period of fccusing field is short in comparison with the
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period of longitudinal vibrations, then in all matrices/dies of
accelerating gaps can be used one and the same value/significance of

the factor of defocusing.
§ 2.6. Selection of the parameters of the strong-focusing channel.

Let us examine several strong-focusing systems, on an example of
which it will be possible to explain the characteristic laws,
important for the identification of the parameters of the

strong-focusing channels.

Let us assume that the strong-focusing channel continuously
consists of the alternating lenses (channel FD, see Fig. 2.5). From
the considerations of symmetry it is obvious that the maximum of
Floquet's modulus/module falls in this channel accurately to the
middle of the focusing lens, and the minimum - to the middle of the
defocusing lens. Let us note that the channel FD is better to begin
with the half lenses, since then the initial conditions for the
matched beam are simplified: matched beam must have at the entrance
of channel a crossover. Matching éonditions will be satisfied, if we
fit by correspondingly beam section in the crossover. Let us begin
period from the middle of the focusing lens:

T = Py,PPy,. (2.190;

Matrix/die P‘P corresponds to half lens and, as it is easy to show,

R
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has the form

K D . K.
3

i COos 5 *S—I\:‘ sSin -
Pm=( SK . K K

) (2.161,
— 5 sin- €Os <y

Let us expand/develop product (2.190):
Ty=Tm=chKcosK:
T,2=——[‘,)(—(chl\">in1\'+-shl\';; AN SO
Ty = ————(cthmI\—-shl\)
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The matrix/die of period in the perpendicular plane
T =P PP,

can be obtained from expressions (2.182) by replacement of K by value

iK:
T\ = Tw=chKcosK:;
f_—%(cos!\shk’—-—ﬁml\) (2.193)
Ty = S = (cos K sh K —sinK).

In the channel $=2D in question. The independent parameters of
matrices/dies are determined by formulas (2.153). For both

matrices/dies e=0. The remaining parameters

cosp=chKcosK; (2.194)

ch KsinK—sh K ; -

v""_2Kl/‘c:thmI\-¢-shK ’ (2.195)
sin K—cos K shK

va=2K ‘/snnk+cosKshK ' (2.196)

where +,— dimensionless frequency in the middle of the focusing
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lens; v.— the same in the middle of the defocusing lens. In
accordance with condition (2.151) the particle trajectories are
stable with
chKcosK <. 12,197

In Fig. 2.16 is constructed the curve according to formula (2.194).
Along axis K is a series/row of the intervals, in which is satisfied
the condition for stability (2.197). The first and widest stability
region lies/rests within the limits

0<K<1.87. (2.198,
With an increase in the hardness of lenses the following stability
regions rapidly decrease in the width. All stability regions after
the first are arranged/located about zero functions cos K, i.e.,
about the points

+

K=@n-1)2 n=2 3, ...

va)

The width of stability region with n>2 can be calculated according to

approximate formula

AK=—"32 (2.199)

ch (2n—1) =

3]

From formula (2.199) it follows: AK=0.036 with n=2; AK=0.0016 with

n=3.
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The field gradients of quadrupole lenses usually are selected so that




R
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the hardness of lenses it lay/rested at the first stability region
(2.198). The use of the following stability regions requires too high
a stability of gradient. Actually/really, according to expression

(2.165)

(2.200)

it is easy to see that entire/all second stability region passes with
b4 b4 g

a change in the gradient to 1.50/0.

Is optimum value cos u within the limits of the first stability
region it corresponds to greatest possible value/significance V-’
since in this case is provided maximum channel capacity. Let us
construct the dependence of dimensionless frequencies ,. v. on value
COS u. fhese dependences in the parametric form are assigned by
expressions (2.194)-(2.196). With cos u=1 we have K =0, vy =v; = 0.
With cos u=-1

cos K = —Cﬁ(: sinK=thKX.

Hence
\‘°—>O CI,
Vg =0 npH cospu — — 1,
Key: (1). with.
The form of the function v (cosp) and  vi (cos p) is shown in Fig.

2.17. Maximum ve. as follows from Fig. 2.17, it begins with cos

u=0.164, moreover at the point of maximum vy = 0.66.
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Fig. 2.16.
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However, maximum is flat and it is possible with unessential decrease
Y¢ (to 5-80/0) to increase cos u to 0.4-0.5. This makes it possible
to considerably lower the gradients of focusing fields, since with
increase in cos pu the hardness of lenses and, consequently, also

field gradients rapidly decrease.

The position of maximum vs4 on axis cos u depends on the

structure of period, but in the majority of the cases this maximum
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proves to be in the interval 0.2< cos u<0.4.

At given value v¢ (in other words, with the assigned hardness of
lenses) it is possible to theoretically how conveniently raise the
frequency of transverse vibrations ..., by decreasing the length of

period S$=2D, since

Oy unu=%vo- (2.159a)

and in this case to respectively inc¢crease channel capacity. But with
an increase in the frequency of transverse vibrations increases the

gradient of the focusing field, since K2-==D%G.

Before converting/transferring to the focusing periods of other
types, let us examine the approximation/approach of "thin" lenses. If
the length of the period of focusing field is fixed/recorded, then
with the decrease of the length of lenses falls the value of hardness
necessary for assigned cos u. Decrease of hardness is connected with
the fact that the idle gaps/intervals between the lenses amplify the
effect, created by each lens. However, since the decrease .of hardness
is accompanied by the decrease of the length of lenses, the gradient
of focusing field does not fall, but even somewhat increases. Thin
lenses, for which D/S<<1, are commonly used in the ion guides. The
strong-focusing optic/optics with thin lenses D/S<<l can be used also

in the linear accelerators to the supcrhigh energies.
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However, with the energies in the range 0.5-100 MeV the parameters of
the strong-focusing linear accelerators are usualiv such, that for
the preliminary estimations it is possible successfully to consider
qguadrupole lenses "thin". qq’Let us refine the concept of the
"fineness” of lens. For this let us represent the matrix/die of lens

(2.166) in the form of the product of three matrices/dies (2.174):
_D :

D . Ky ' K
1 Ei‘thT 1 0 1 sth 5 "o
P= SK . (2.201,
0 1 y ~'—TSiNI< | 0 1 .

Outer matrices/dies are equivalent to idle gaps/intervals with length

along the axis z, equal to D/K tg K/2. Average/mean matrix/die

corresponds to refraction of trajectory (jump of derivative) in each
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of principal planes of thick lens (Fig. 2.18). By analogy with
optic/optics it is possible to introduce the concept of the focal

distance of lens, calculated off principal plane II:

0 RIS

f oo e— . |_.-“.."
! A sttt A

Expression (2.202) follows from the simple geometric considerations,

if we trace the particle trajectory, which was moving prior to the
entrance into the lens in parallel to axis. Lens is called thin, if
its length substantially less than the focal length. According to
expression (2.202), the lens is thin, when its hardness is
sufficiently small

KsinK = K* « . (2,200
For satisfaction of the condition of "fineness" it is not compulsory

so that the length of lens would be small in comparison with the

length of the period of focusing field.
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But if lens is long, then its focal length must be large. Let us
write the ratio of the length of lens to its focal length in the

form:

b _0b s
| s 7
Let us examine two different cases of satisfaction of the conditions

of "fineness":

1. The length of lens is substantially lower than the length of
the period of the focusing field, but the focal length of lens can be

commensurated with the length of the period:

il (2.204)

2. Pocal distance of lens is substantially more than the length

of period of focusing field, but length of lens can be commensurated
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with length of period:
S D

I P

S

IN

[

(2.205)

With satisfaction of the general condition of fineness (2.203) the
matrix elements of lens it is possible to expand in power series on K
and to use a finite number of terms of expansion. In the case (2.204)
it proves to be sufficient to be restricted to the first terms of
expansion. If D/S~1/2, then it is necessary to draw the second terms
of expansion. But if condition (2.205) is satisfied, then equations
of motion can be solved in the "smooth" approximation/approach which
let us examine in § 2.7. In the smooth approximation/approach the
ratio of the length of lens to the length of period can be any,

provided the focal length of each lens was much more than period.

Under condition (2.204) the use/application of
approximation/approach of thin lenses is especially simple. By
replacing

K \
th% L,_‘:—; sin K = K,

we have

. D
)( L )(1 ?s‘) (2.206)
SK? : '
J\=25= 1/ 0 1

The matrix/die of thin lens is equivalent to two idle gaps/intervals,

1 __9_
P= 25
0o |

by length D/2, divided by one refracting plane.
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Since D/S<<1l, matrix/die (2.206) even more is simplified

o] 0
P = ( QA \, (2.2”'\'11‘

and thin lens is replaced by refracting plane. For simplification in

further recordings let us introduce designation

Noe -
oo T T (0

1.7

Then the matrices/dies of thin lens will take the form
I 0 1 0

Pz [ ‘_] {
{—4bl" Pty

to
ty
r

It is easy to show that the same matrices/dies for thin lens can be
obtained by another method, by assuming that a change in the particle
displacement at the length of lens is negligible. Actually/really, by
integrating equation of motion in the section of longitudinal axis,
occupied with the field of lens (taking into account the reai

distribution of gradient along the axis), with x=const we obtain

dx S2
S o= e—p‘ S G (1) dr. (2.200)
Hence
dx S -
A=~ Ko
where .
2_pre. L “\ d= o
Ki=DtL. 5 So(.u.. (2.210)

Comparing expressions (2.165) and (2.210), it is possible to see that

K - hardness of thin lens, determined with the effective value of the
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gradient

4

I ~
G:,¢,¢=’D‘l\c(:)d:. (2.211

Thus, if we determine the hardness of thin lens by the formula
A =Dl/ijq"« ) Sy o ‘

then
A=~y
The length of lens, entering equality (2.211), can be selected

arbitrarily, since initial expression (2.209) this length does not

contain.

Let us examine channel FODO (see Fig. 2.6), which consists of
thin lenses D/S<<l. The matrix/die of the period, which begins f{rom
the middle of the focusing lens, is equal to the product

T =P HPHP, .
Page 120.

The length of idle gaps/intervals according to the conditionn is equal

to S/2. We have

1 —2562 1=
T—(—4b'(l—b) 1—2b=)

/

—

In matrix/die T reverses sign b. Then, according to expression

(2.153),
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cospu =1—2b%

=b
T=b"'

- (2.213)
vy=2b ‘/{_:—:

Vo = 2b

To the beginning of the first¢ stability region corresponds b=0; cos

u=1 vg=v,=0. At the end of the first stability region b=1;

dvg

cosp=—1: vg=0; v,— 0. Derivative T

becomes zero with
b=0.62. Maximum value/significance Vv¢=0.60 attains at cos u=0.24.
General/common/total variation Ve, v;. on cos u it is qualitative the

same as in Fig. 2.17.

When the period of focusing field contains accelerating gaps,
the selection of the medium frequency of transverse vibrations
becomes complicated. Let us return to the period of the type FOD with
the accelerating clearance whose matrix/die is determined by product
(2.161). For simplification in the problem let us disregard/neglect
the idle gaps/intervals between the lenses and we will consider the
accelerating clearance infinite narrow (g/S<<1l):

T =PIP. (2.161a)
Matrix/die T 1is assigned by expression (2.186). In this case for the
period falls one accelerating clearance, so-that it is possible to

assume L=S:

10
P=<2Y 1) - (2.214)
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Turning/running up the matrix/die of period, we obtain

cos,u.=chKcosK+y cthinKz-;shKcosK ) (2.215)

The medium frequency of transverse vibrations can be selected, if to
use the diagram of stability in the coordinates ¥, _by K, proposed by

Smith and Glyukstern [32]. Let us apply on plane v, K family of

curves K(v), which correspond to different fixed values of cos u
(Fig. 2.19). Factor of defocusing (2.170) depends on the phase of

particle.
Page 121.

Operational conditions on the diagram of Smith-Glyukstern is usually
selected in order to not exceed the limits of the stability region of
transverse vibrations in any phases of the particles, which lie
within separatrix (1.59). The region of stable phases lies/rests
within the limits
20s < P < — Q- (2.216)

Hence we obtain the limits of a change in the factor of the
defocusing o -

— Vo << Y < 2Y,€OS @e. (2.217)
For the stabilization of transverse vibrations of all particles,
seized into acceleration mode, operating point should be selected

inside the shaded rectangle which is limited by the curves cos u=l
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and cos u=-1 (see Fig. 2.19). The limits of the permissible change in
value cos u for the synchronous particle are determined by the cut of
vertical straight/direct with abscissa y =T lying in limits

COS 1y << COS i, < cos (i
For an increase in the channel capacity value cos u should be

selected in these limits so as to ensure maximally high

value/significance Yy = V.

FPor the preliminary estimations it is possible not to resort to

the diagram of Smith-Glyukstern, construction of which requires, as a
rule, cumbersome calculations, but using the simplified formula for
cos u. Let us represent the equality (2.:215) in the form

COS 1 = COS pgy — Y/ (K.
where

cospy =ch Kcos K
characterizes the focusing channel in the absence of accelerating
gaps, and factor with the factor of defocusing is equal to

f(K)=2Kl—(cthinK+shKcosK).

This factor noncritically depends on K, after remaining close to

unity over wide limits of hardness change:

f(Ky=1 30'*’2‘563‘0—---
In interval O0<cospe<<l! factor £ differs from unity less than to
200/0 and in the approximate computations it can be replaced by one;

then we obtain the simplified formula

COS 14 == COS g + Y. (2.218)
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Fig. 2.19.
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Formula (2.218) is approximately valid not only for the period in
guestion. Subsequently let us show that in the smooth

approximation/approach formula (2.218) occurs in the general case.

Formulas (2.214), (2.215) relate to one of the simplest periods
of focusing field in the linear accelerators. In the more complicated
cases the period contains several lenses of one sign and several
accelerating gaps. Into the product, which is determining the
matrix/die of period, enter as many matrices/dies P and with respect
to P, as lenses of one sign in the period (n), matrices/dies I' and

as accelerating gaps and period (S/L). Table 2.1 gives values n and

S/L for some proton accelerators. In the general case value cos u -
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the complex function of the parameters, which are determining a
number of identical matrices/dies in the product and elements/cells
of these matrices/dies in different sections of period. Let us
disregard/neglect idle gaps/intervals. Then such parameters prove to
be six:

L

cosP=ffK,YT,§,¢§_.T,n;;. (2.219)

The diagram of Smith-Glyukstern it is necessary to construct each
time anew for the fixed values of four latter/last parameters in
expression (2.219). However, for the preliminary estimations during
the selection of the structure of period problem can be substantially

simplified, if to introduce two assumptions:

1. The length of each accelerating gap is much lower than the

length of the period of the focusing field

.. S
‘\I.TD—=2.

i
Ml
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Table 2.1.
(2, (3‘ Hueac YHCeno THHI
('\ YCnOopHTEAH Tun nepuona ,}’;;:3:’?;‘:\1’; QAHOTQ
K3 IHAKS N
!-4 DE3OHATOP .HHEIIHOTO VTKOPH- o1 1 1
rean H-2
2-i1 pesoMdAiup auxeiiHoro vekopu-  DOQI0T 2 2
tera M-20 0 L 0 0L 0oL
! it pesonatop uumexntopa LLEPH D010 2 I
Ycxopiteas H-100
7
2. u 3-& pesonaTopw nHxKextopa  QOPO.1NJ0 4 2

LLEPH

Key: (1). Accelerators. (2). Type of period. (3). Number of
accelerating gaps. (4). Number of lenses of one sign. (5). 1lst
resonator of linear accelerator I-2, (5a). the 2nd resonator of the
linear accelerator I1-2. (6). 1lst resonator of injector CERN

accelerator I-100. (7)., 2nd and 3rd resonators of injector CERN.
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2. Defocusing action of all accelerating gaps in one period can

be noticed by their cumulative effect, led to one point of period.

Then, for example,

T =TPTPTPTP =~ PPITTTPP = PP,

In the general case we will obtain the matrix/die of period,
analogous(z.lsla),

T ~ PrsLpn, (2.220)




DOC = 82105202 PAGE A$¥

But matrix/die 5t exists (2.214), and raising to the power of
matrix of lens analogous (with 2.178) gives

pr __( cos K :,.XT sin K‘) cos nk _ﬁ Sk
.— - = -

—2nKsmK  cosK |/ \— 1R smanA NEH .

so that

cosu =/ (nk, yi
where f - function (2.215), in which hardness K is replaced by value
nK. Thus, the introduced above simplifying assumptions make it
possible to construct the diagram of Smith-Glyukstern in the
coordinates vy, nK, approximately valid for any values of n, S/L.. This
diagram coincides with the diagram, given in Fig. 2.19, if we replace

the designation of axis K by nkK.

Field gradient in the quadrupole lenses is connected with

parameter nK with the relationship/ratio

nK=-.nD V-g ,

where nD - total length of the lenses of one sign in the period. It
is increased a number of lenses of one sign in the period, keeping
constant the length of lenses and after increasing respectively the

length of period. Then
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1) with assigned cos u is retained nK and, therefore, field

gradient in the lenses falls as 1/n?*;

2) with an increase in length of period S~ 2nD increases the
factor of defocusing of synchronous particle (2.169) and, therefore,
the spread/scope of oscillations vy increases as n?. The region of
allowed values cos u is compressed and with sufficiently high values i

Y. becomes zero;

3) with an increase in the length of period decreases the
minimum frequency of transverse vibrations (2.159). Channel capacity

falls as 1/n.

Consequently, an increase of the number of lenses of one sign in

the period (with D=const) makes it possible to substantially lower

the power, spent on the focusing, but in this case is decreased

stability region and descends channel capacity.
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In the initial part of the proton linear accelerator with the
energies of injection to 1 MeV system n=2 does not provide the
stability of particles with all phases and limits of separatrix. In

further parts of the accelerator when the factor of defocusing of
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synchronous particle already sufficiently attenuates, this system can

be used, if is admissible a reduction in the capacity.

For the analysis of the focusing channels with the accelerating
gaps it is possible to utilize another diagram, sometimes more

convenient. This diagram let us examine subsequently.

Since the medium frequency of transverse vibrations for
synchronous particle #, is selected so as to ensure the stability of
all particles, seized iﬁto acceleration mode, and to obtain a
- maximally high value/significance of capacity, then is expedient to
support ¢sp, with constant at the length of accelerator. This
condition does not always succeed in maintaining/withstanding, since
in the beginning of accelerator the gradient of focusing field can
prove to be too great and virtually unrealizable. In .that case is
begun the channel from the lower value/significance of medium
frequency, and then they gradually lead medium frequency to the
optimum value. In view of the fact that the phase volume of beam
(2.125) remains invariant, the semi-axes of beam with an adiabatic

1
increase in the frequency decrease proportionallyf;iﬁ-

§ 2.7. Floquet's functions in the smooth approximation/approach.

Parametric resonances.
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The matrix method of calculating Floquet's functions gives
solution at one chosen point of period. This method is convenient for
determining the natching conditions, calculating the medium frequency
of transverse vibrations, evaluation of stability region. At the same
time method possesses deficiencies/lacks. For example, the volume of
computational work rapidly grows/rises with an increase of the number

of different sections in the period.

Smooth approximation/approach gives solution for Floquet's
functions directly depending on r and does not require the
approximation of fields in the quadrupole lenses by square waves. The
approximate smooth solution proves to be sufficiently to precise
ones, if phase change of transverse vibrations satisfies the

condition

n
-y < 1. (2.221)

Condition (2.221) means that the period of transverse vibrations must
be considerably more than the period of focusing field. Smooth
approximation/apﬁroach is reduced actually to the first approximation
of the method of the "averaging", developed by N. N. Bogolyubov and
by Yu. A. Mitropol'skiy [69]. Generally, smooth
approximation/approach gives sufficiently accurate results in all

cases when the frequency of periodic effect is much higher than the

natural frequency of dynamic system [70, 71, 21].
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We will search for the solution of equation (2.62) in the
following form:
() =[l14+g) X (7). 12,222

Let us substitute solution (2.222) in equation (2.62):

42X . dq dX , LA G -diﬂﬂ \; *Q\’ qQ\ _ O (q 20 4,

T w79 TH/E T

)

Further, let us determine function g(7) with the aid of the

differential equation

4 .
= —Q+T (2.224)

where Q - average/mean value/significance of function Q(r) in the

period
_ *H‘-l
Q=\ Qv dr. (2.225)

. . . d . .o
First-order derivative 7%—&% just as the second, periodic

functions 7 with the period Ar=1l. Actually/really, from expression

(2.224) it follows

-1
BT : R ... R
=+ )—g (@ =\ SFrdr=0

T

Function q(r) is assigned with the aid of the differential second

order equation and contains two arbitrary constants. Let us select

one of the constants in such a way that would be satisfied the

condition
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1
(1)dt 0. (

<

5|8l

A~

Then original g(r) will also be periodic function, since

Tt
> dg

T

The second arbitrary constant let us determine by the condition

g= \ 9(v)dv=0. (2.227)

T

Thus, equation (2.224) together with conditions (2.226), (2.227)

uniquely determines periodic function with the period Ar=1 and with

the constant component, the the equal to zero.
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I1{ the distribution of gradient along the axis of channel can be

approximated by the sinusoid

S-'/‘.l 11
Qit) = ————51,'—’— cos ar,

then function g - the harmonic:

S22
q(t) = —3ps~cos 2ar.

In the general case function q(r) is always substantially smoother,
than the coefficient of the equation of Mathieu-Hill,
Actually/really, function g - the result of the dual integration of
this coefficient. For an example Fig. 2.20 gives the course of
coefficient Q(r) in the channel FD (with the approximation of fields

by square waves) and corresponding to this coefficient function q(r).

Substituting expression (2.224) in equation (2.223), we obtain
(1+9 2% 1@+ X+

From equation (2.223a) in the principle is determined function X(r)
for the exact solution. however, equation (2.223a) is not simpler

than the initial, since its coefficients are also the periodic

functions of time. Therefore we will search for approximate solution
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of equation (2.23a), assuming that function X(r) is changed slowly,
so that its change in each period of focusing field can be
disregarded/neglected. Then in accordance with expression (2.227)
.r—r-?)z.\'m —g(0 X=X,

Value X in expression (2.222) - this is the average/mean
value/significance of trajectory in each period of focusing field. It
is averaged for the period equation (2.223a). Utilizing conditions
(2.226), (2.227), we obtain

e — WX =0, (2.228)

Into equation (2.228) is introduced the designation

T-+1

rﬁ=5+s g(r)Q(r)dr. }2%%

T
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I

Fig. 2.20.
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The solution of equation (2.228) exists
X (1) = Asin{ut —0). 2.230)

Consequently,

| (v =A[l ~g(D}sinnt -0} {2,231
Value u - the angular frequency of the fluctuations of the slow
component of trajectory (2.222). Cyclic period of a function q(r) is
2n. Slowness condition of function X(r), obviously, is satisfied with
u<<2w. Solution (2.231) in this case is the slow sinusoidal function,
to which are superimposed "rapid" pulsations with the period of the

focusing field (see Fig. 2.5).

Let us rate/estimate the spread/scope of oscillations of a

function q(r); it is close to the harmonic. Therefore

dq .
- = 2aq;

d"q -~ 2
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or

Qr) = Q—4xg(r.
Substituting this expression into formula (2.229), we have

u? xQ — 4ot
In the strong-focusing channel without the accelerating gaps the
average/mean value/significance of the coefficient of the equation of
Mathieu-Hill is always equal to zero. Let us find
connection/communication between the factor of defocusing and the
average/mean value/significance of this coefficient. Introducing
function (2.55) into integral (2.225) and taking into account that
number of accelerating gaps in the period is equal S/L, we obtain
Q:—‘z— \ Q. (v dr.

According to expressions (2.{57), (2.189),

Q= -2y (2.232)

The mean square of function g(r) proves to be approximately equal to

From conditions (2.221) and y<<1 it follows that
@<l g <)L (2.233)
Thus, rapid pulsations are small in comparison with the amplitude of

Ll

the slow component of solution.

Page 128.
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The amplitude of approximate solution (2.231) - periodic
function of the independent variable with the period Ar=1 and,
therefore, is proportional to the modulus/module of Floguet's
function

e(r) = Cil+q().
The phase of Floquet's function in the approximation/approach
accepted exists
@ (1) = pr.
Value u is equal to phase change of Floquet's function in the period
Ar=1, which coincides with the determination u, given in § 2.3. The
condition for the standardization of fundamental solutions (2.65)

leads to relationship/ratio (2.105), whence it follows
1

\ l+ﬂ"

~

V]
Let us expand integrand in series/row according to degrees of q and
we will be restricted to linear term. Condition (2.227) gives

C=—=.

VP
Approximation for the modulus/module of the normalized function of
Floquet takes the form

e(®) = == {1 +q (). (2.234)
Va

The instantaneous frequency of transverse vibrations (2.103) is equal

to

o (T) = mpi—r—q)',- ) (2.235)
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the envelope of matched beam (2.122)

r(t) =~ z:ill +~g(1)]. (2.236)
The semi-axes of the section of matched beam in both transverse
planes on the average are identical and equal to

R¢= /?T; (2.237)

Envelope is relatively weakly modulated with the period of focusing
field, moreover the depth of modulation is uniquely determined by
function g( 7). In the smooth approximation/approach the depth of

modulation of envelope does not depend on the phase volume of beam.

Let us replace in integral (2.229) function Q(7) with its
expression from equation (2.224) and let us take integral in parts.

As a result we have

N

1
_ s da \ 2 ;
p=Q+ (4 ) an | (2.238)

14

-

.

0
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Taking into account that coefficient Q(r) - the sum of two functions
(2.56) and (2.57), function q{r) also can be divided into two
components/terms/addends

‘7=4¢"5’q4»

as follows

dzd.
3;: = —Qp (1)

%:- "'"Qu (t) + 6»-
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Expression (2.238) will take the form

2 d9y d 7 dg, G
, fdgy NP o S0 daw  Tddy T gy
pr=—2v+ | N R RN A I

Let us examine each component/term/addend under the integqral. Value

1
2y Tdag\?
p,¢='\ \F/’ dr
0
is a square of medium frequency in the channel without accelerating

field. Further o

d9p  dg,
§'—a?'—a}—d't=0.

Actually/really, reference point r always can be selected so that the
function Q,(r) would be even, and function <o(T) - odd. Then .%g will
be even function, and %%1 - odd. Integral on the period of the
product of even and odd functions is equal to zero. The third
integral is proportional y3<<y and it can be disregarded/neglected.
Finally we will obtain .
e = pj—2y. ' (2.239)
If u is small, then
cmpzl—%w

and equality (2.239) can be rewritten in the form

COs 4 =COS pho + Y. (2.218a)
This formula, obtained here in the smooth approximation/approach for
any focusing structures, is valid between very wide limits of change
pe- From the results of § 2.6 it is evident that for the rough
estimates it it is possible to use up to negative values cospy, i.e.

formula (2.218a) emerges far beyond the limits of the applicability
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of smooth approximation/approach.
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The maximum spread/scope of function gq(r) is proportional to the
ratio of the length of period to the focal length of lenses. Thus,
for the structure in Fig. 2.20 of equation (2.224) and conditions

(2.226), (2.227) it follows

_ @
Iuaxe = 35

where Q - the fixed level of function Q{(7) in each lens. But from

expressions (2.202) and (2.56), (2.165) we have

s~s 2. ".'.__/D\\,z D
7—~‘5K, K =3 Q. (2.240)

Hence
1 S

Quane = 67 °

Thus, the spread/scope of oscillations q(r) is substantially lower

than the ratio S/f. Smooth approximation/approach is correct, when
this relation little and in this sense it is one of limiting cases of
approaching thin lenses (2.205). However, smooth
approximation/approach does not require so that the ratio S/f would
be very—little, and therefore it gives sufficiently accurate results
for the thick lenses when matrices/dies (2.208) prove to be already

inapplicable.

The comparison of formulas (2.229), (2.234), (2.235) with the
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exact solutions, obtained as a result of the numerical integration of
the equation of Mathieu-Hill, shows that smooth solution gives a good
approximation/approach to u (with the error within limits of S5-80/0)
in the interval 0.3<cos u<l, i.e., in the entire virtually
interesting part of the first stability region.
Approximations/approaches to instantaneous frequencies prove to be
more badly: accuracy indicated above are retained in the interval to

cos wu=0.6-0.7.

The frequency of transverse vibrations depends on the phase of
particle. In the smooth approximation/approach, according to
expressions (2.239), (2.170),

!*::“5’—2\”5%3%‘ (2.241
The phase of the particle, seized into acceleration mode, varies
around the synchronous phase and the medium frequency of transverse
vibrations periodically is changed with the frequency of longitudinal
vibrations. Longitudinal and transverse vibrations prove to be
parametrically connected that it is possible to lead to the
supplementary driving of transverse vibrations at frequencies of
parametric resonance. By hypothesis, accepted above, the amplitude of
the longitudinal component cof accelerating field does not depend on

transverse coordinates. Thereby it is disregarded by the parametric

effect of transverse vibrations on the longitudinal ones.

e
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Smooth approximation/approach makes it possible to simplify the

problem about the parametric resonances of transverse vibrations.

Page 131.

Let us assume that the phase of particle in the period of focusing
field is changed negligibly little, but let us consider the change in
the phase, connected with the longitudinal vibrations, at the entire
length of accelerator. Let us examine only small longitudinal
vibrations, for which in view of (1.47)

= |+ §cty g, (2,242,

Equation (2.228) is reduced to the equation of Mathieu, since

o= Bsindle, RIAE R

where @, ¢ - respectively instantaneous values of amplitude and

frequency of small of phase. From the expression for the factor of

defocusing of synchronous particle (2.169) we have

(2T ) = 4y,. (2.244)
In the approximation/approach of small oscillations (2.242) the
square of medium frequency (2.241) is equal to

pi=pl—2y,vctg ¢, (2.245)

where

pi = py—2v. (2.246)
and u, - medium frequency of transverse vibrations of synchronous

particle. Let us substitute expressions (2.243-2.245) in the equation
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for the slow component of transverse vibrations {(2.228):

as\

S - (=2t g sin2 | YN = 0. (2247

By the transformation of the independent variable

S B e

5T i
equation (2.247) is led to canonical form (2.108) with the values of
the coefficients

“E : q.:(bctﬂ([a. (3:48)
Ys

The ranges of change in coefficients (2.248), which correspond to the

a=

unstable solutions of the equation of Mathieu; are given in Fig.

2.11. The more detailed information about the character of the

solutions of the equatioh of Mathieu is contained in book [59].

Taking into account relationships/ratios (2.106), (2.244), we have
T2y (2.249,

N9,

where ., - the medium frequency of transverse vibrations of

a=

synchronous particle to scale of time t; % - frequency of small

longitudinal vibrations.
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Parametric resonance takes place when the medium frequency of
transverse vibrations of synchronous particle is close to half
integral value/significance of the frequency of the small

longitudinal vibrations:

Qu=2Q (=123 ... (2.250)




DOC = 82105202 PAGE 182

In other words, the regions of parametric resonances appear about the
values
ws = nty,,

er cmp,zl-—%n%r (2,251
According to expression (2.95), the excitation of parametric
resonance occurs with the specific phase relationships/ratios between
the transverse and longitudinal vibrations. Therefore parametric
excitation they can test/experience not all particles. In the most
unfavorable case from expression (2.95) it follows

X (3) = Aerlo (3) cos D (). (2.252)
Parameter k for different regions of resonance can be calculated by
the methods, presented, for example, in the book of MacLachlan {59].
The characteristic index of MaclLachlan u is connected with parameter
k with relationship/ratio k=uwm. If we rewrite solution (2.252) in the
form

X ()= Ae! Yo () cos D (1), (2.252a)
then the time constant of oscillation buiidup will be equal to

e=1Ic, (2.253)

where 7}==%; - period of longitudinal vibrations. Width of band of
resonance and time constant oscillation buildup in the middle of band

depend on coefficient of q (2.248). Let us accept for further

estimations ®=j¢,;. Then when cosg,=0,8 we have g=0.86.
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Let us give appropriate data for this value/significance of q.
1. First region of parametric resonance.

Width of unstable region
I —0.84y, <cosyu, << [ —0.045y,. (2.254
Middle of the band of resonance (a=1)
cos py =1 —0,5v,.
Time constant of oscillation buildup in the middle of the band
8 =0,64T, (2.255)

Page 133.

2. Second region of parametric resonance. Width of unstable
region
1 —2.20y, << cos p, << 1 —1.90y,. | {2.256)
Middle of the band of resonance (a=4)
cosp, =1 —2y,.
Time constant of oscillation buildup in the middle of the band
0 =6.4T.. (2.237)

The regions'of parametric resonance are conveniently examined on
plane y,, cosyu,. 1f we apply to the same plane of the field of stable
trajectories, then diagram in coordinates y.. cosyu, will make it
possible to determine the optimum value of medium frequency taking

into account parametric resonances. Let us establish for each
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value/significance y, the permissible range of change cos ,, so that
all particles, seized into acceleration mode, would have the stable
trajectories of transverse vibrations in any phases in the limits of

separatrix (2.216). From equalities (2.218a) and (2.170) it follows

S L 0T
COS @ =COSs ~— Vs . 7, q‘; -1 . (2.258)

COS ' = ¢OoS u. ~y.f2cosg,— 1
When o= —g¢,
cos 1’ = COS U, — 2y,

Let us require satisfaction of the conditions

cosu < l: cosu”" > 1.
From these two inequalities we determine the permissible boundaries
of selection cosu,:

— (1 =2y, ) <<cosp, <1 —vy,(2cos¢g,— 1. t2.259)

In Fig. 2.21 is constructed the diagram of stability in coordinates
Ys. COS p,. The boundaries of the region of allowed values cosu, are given
by heavy lines. If the values of parameters y, and cosu, are selected
within the region, then by this are provided the conditions for
lateral stability of all particles in the limits of separatrix. Upper
boundary of the region depends on the selected synchronous phase. The

point of intersection of boundaries has coordinates

3_-_—2C0=q>,
l+2cosq, ®

Yog"_?—'—; COS i, =
I 42cos g, 4

Lover boundary intersects the axis of abscissas at point vy, =03,
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Stability limits on the diagram Fig. 2.21 are obtained on the

basis of apprnximation formula (2.218a).
Page 134.

Precise calculations show. that stability limit somewhat wider. Lower
boundary, obtained from precise formulas, lies/rests below than on
Fig. 2.21, and intersects the axis of abscissas at point y, x 0.65.
Thus, construction of diagram according to the formulas of smooth

approximation/approach gives supply on the stability.

On the diagram Fig. 2.21 are shaded the regions of parametric

resonances.

Diagrams of this type can be utilized instead of the diagrams of
Smith~Glyukstern for the preliminary identification of the parameters
of the strong-focusing linear accelerator. The parameters of
accelerator are selected according to diagram 2.21 in the following
sequence. First are established/installed the values of synchronous
phase and specific acceleration, proceeding from the considerations,
connected with dielectric strength of accelerating gaps, the
permitted by expenditure high-frequency power and value of capture

region. Subsequently these values can he more precisely formulated

during the selection of other parameters. Strong focusing does not
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usually limit the selection of synchronous phase. Then are determined
the frequency of small longitudinal vibrations and the factor of
defocusing of synchronous particle (2.169) at the entrance of
accelerator. During the determination of the input value/significance
of the factor of defocusing is selected the permissible ratio S/gA,
which ensures value ;. solved by diagram. By obtained
value/significance +, in the limits, solved by diagram, is selected
value cosu, making it possible to obtain maximally high frequency

vww fOr the synchronous particle. Then they calculate the hardness of
lenses from the matrix/die of period or (in the permissible cases)
according to the formulas of smooth approximation/approach. By the
assigned hardness is determined the law of a change in the gradients

of lenses along the axis of accelerator, on the basis of the lengths

known for each period of lenses and particle speed.

Let us examine an example. Let us assume for the linear
accelerator of protons is selected the parameters:
cos¢, = 0.8 W, =27.10-% energy of injection W,=700 keV. At the entrance

of accelerator (Q/w) *=8.73-:10°°. If we select S/BA=4, then 1y =38

knowingly lies/rests at the unstable region.
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Fig. 2.21.

Page 135.

With S,/BA=2 the factor of defocusing.of synchronous particle

is located already in the stable region the diagram Fig. 2.21. The
time constant of the increase of the amplitude of transverse
vibrations in the region of first parametric resonance (n=1) is
equal, according to expression (2.255), approximately/exemplarily to
half of the period of longitudinal vibrations. This region is
dangerous, and during the selection of value cosu, it should be
avoided. Most adequate/approaching values cosu, both for reasons,
connected with the expenditure of power, and for reasons, connected

with the channel capacity, is cosp, = 0.45— 060. If value co-u, is kept
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constant along the axis of accelerator, then due to the adiabatic
fading of the factor of defocusing operating point on the diagram
will be displaced to the left and beam will pass the regions the
second, third and subsequent resonances. These regions are not
already virtually terrible, since they pass rapidly and correspond to
the slow responses of oscillation buildup. In the second region
parametric resonance leads to the maximum building up of

oscillations, knowingly less than 1l0o/o.
$ 2.8. Transverse vibrations in the imperfect strong-focusing system.

Until now, were examined the strong-focusing channels without
the errors. It was assumed that the structural/design and electrical
characteristics of all periods were identical. In the regular channel
can be spread the ma;ched beam. Different irregularities lead io the
disagreements/mismatches of beam and, therefore, to an increase in
its effective phase volume. Let us examine allowances for the
parameters of accelerator, connected with transverse vibrations. For
this let us calculate the disturbed (mismatched) parameters of beam
after each irregularity and will determine the sizes/dimensions of
the mismatched beam in the channel. In the general case the problem
is reduced to the determination of Floquet's ellipse, circumscribed
around the mismatched phase volume, i.e., to the calculation of

coefficient £, [see expression (2.140)]. Angle of the slope a and
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relation of the semi-axes of Floquet's ellipse (see Fig. 2.12) are

uniquely determined by the parameters of channel at each point of

period. Above we connected values M/N and o with the modulus/module
of Flogquet and his derivative (2.119a). For the geometric
constructions it is useful to express the relation of semi~axes and
the angle of the slope of Floquet's ellipse through the matrix
elements of period. The substitution of expressions (2.160) into

formulas (2.119a) gives

Y 1 : s oy e 3 .
e m s LV — vi)P —dvieoste .
AY Jv cose ‘17—\ -1 d ) i

Jvsine (2260,
P—v2 ’

1gla= —
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At the points of the extremum of Floguet's modulus/module e=0 and

%:v; a=0. Let us examine the basic forms of the errors which can
arise in the strong-focusing channel of linear accelerator. The given

cases show the possible procedure of calculation of allowances.

a. Idle gap in channel. Let us assume that two parts of the
focusing channel are divided by the idle gap/interval with a length
of 1, which disrupts the regularity of channel. This gap/interval, in
particular, can arise between the adjacent resonators of multicavity
accelerator. If in the first resonator beam was matched with the

channel, then after the passage of idle gap/interval due to the drift

of particles along the axis x with dx/dr=const beam will be
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mismatched and its envelope will cease to be periodic function. The
effective phase volume of beam in this case grows/rises in accordance
with expression (2.140). Picture on the phase plane is analogous to
Fig. 1.14, but ellipse is extracted in the opposite direction, since
X grows/rises with dx/dr>0. The geometric calculation, analogous to
the calculation, given in § 1.4, with the use of formulas (2.138),

(2.139), leads to the expression

U=lta )/ 1++at+4a (2.261)
where ,
v
a=0 3 (2.262)
(v, ¢ = the parameters of channel at the point of the rupture of H

regularity). It is possible to show that value ¢, proves to be
minimum, when channel is brought at the point where e=0.
Actually/really, %, - monotonically increasing function a, so that
§i=%iuau when a=a,,, From formulas (2.154), (2.262) we have

a=|T fﬁ‘ﬁ . (2.262a)
Parameter a attains the minimum with

Let us examine for simplicity channel FD. 7 - phase of period,

calculated off the beginning of the focusing section. By the
multiplication of the conformable matrixes
T (1) = PPP,,_«

we will obtain

T3 = —2K [ch K sin K —sh K cos (4Kt —K)];
Ty = — 2K {ch (4Kt —K) sin K — sh K cos K|.
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Hence
CRET
dt
d Tay
dt

=8K:sh A sintdt— D K:

=8K*sh(4t— 1) A’ sinX.

Both functions|T,,(r)] and|T,,(r)] have an extremum at point r=Y,., the
extremum corresponding to the minimum

a2, Ty _d®iTa - _3op
| TF_T"&A sh K> 0.
However, a similar result is obtained also for the periods of other

types.

I1dle gaps/intervals lead to the essential disagreement/mismatch
of beam. Thus, in the linear accelerator of protons I-100 the idle

gap/interval between the resonators falls to the points of the

extrema of matched envelope. In this accelerator—§;=2:vn=lfl Hence
with 1/BA=1 we have § =25 rue=1.587cra. With 1/B8A=0.5 we have

1= 1,6; ruanec =1,27 reora.

e

b. Displacement of group of lenses relative to axis. The
simultaneous dispiacement of the group of lenses can be connected,
for example, with the displacement of the foundation beam/gully to
which is fastened the part of the lenses of the focusing channel. Let
us assume the amount of displacement is equal to Ax, the displacement

occurring at point e=0. Let us assume that is displaced the section

D —
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of the channel, on which is placed more than one transverse
vibration. This shift/shear corresponds to the instantaneous
displacement of center of oscillation. Picture on the phase plane is
analogous to Fig. 1.13. The amplitude of oscillations grows/rises by
value

AA =2Ax,
but the diameter of beam - by 4 Ax. Displacement tolerance of the
group of lenses usually is established/installed within the limits of

0.1-0.3 mnm.

c. Displacement of one lens. The considerable displacement of
one lens can occur, for example, when terminal span half-tube is

fastened to the end-type wall of resonator and its adjustment is

respectively hindered/hampered. With the transverse displacement of

lens to value Ax the beam falls into the supplementary magnetic field
B~~GAx, which deflects/diverts particles from the initial direction.
Parasitic slope deviation of beam, caused by the displacement of

lens, is determined for the thin lens by expression (2.209):

dx S 1o
A-a—‘-sb— Ax.
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This increase in the inclination/slope is general/common/total for
all particles and leads to the fact that the beam begins to oscillate

as wvhole (Fig. 2.22). In particles appears coherent component of
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oscillations. Since A1=.éxj the appearing in this case increase in
the amplitude is equal
M= F (2.289)

It is assumed that at the end of displaced lens ¢=90. which

corresponds to the worse case.

d. random errors in focusing system. Let us assume thai the
random errors in the arrangement of quadrupole lenses and in the
gradients of focusing fields are distributed in all periods according
to one and the same normal law with the mathematical expectation,
equal to zero. In this case the mathematical expectation of an
increase in the amplitude of transverse vibrations is also equal to
zero. The evaluation of the effect of random errors we will produce

according to the standard deviation of an increment in the amplitude

from zero. Entire calculation let us conduct for the particles with

certain average amplitude of oscillations, but not for envelope of
particles, since if we conduct calculation for the envelope, then
after each random error they would be oriented to the worst particle
and would be obtained the too close tolerances, not justified
virtually. Allowances depend substantially on the structure of the
focusing period. Therefore everywhere, where it is necessary, let us
point out, for what structure is obtained the specific allowance. All
errors let us relate to one phase of period. For this phase let us

accept the middle of the focusing section in which v=v,..
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We differentiate the equation of trajectory (2.98). Taking into
account expression (2.155), we obtain
x(t)=A(r)cos D (1) 46Y;

v () =—v(1) A(7)sin [D (1) +-e (1) +8).

The modulus/module of Floquet's function is connected with the symbol
of the amplitude of oscillations A(r). From equations (2.264) it

follows:

1 .1 /7 dx N3 si d
2 2 1/ 4x N, ne X
A cos’e[x AN +2 v xd_TJ )

(2.265)

let the particle trajectory in the assigned phase of period

test/experience disturbance/perturbation §x and 6(dx/dr). The

amplitude of oscillations will increase by value 6A.
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Fig. 2.22.
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We differentiate expression (2.265) and it is averaged on all
particles, considering all phases of transverse vibrations equally

probable to
(AR = — -1 (G0~ &(éhi+25ch;o&ﬁ.

DJeosde
If we carry errors to the middles of the focusing sections where

e=0, v=vq¢, then

l |,

EAF = 5 | BxF - (=0 | (2.206)

At the medium frequency fixed/recorded along the axis of channel of

the disturbance/perturbation of the amplitude transverse vibrations

do not attenuate. Afterward \., the periods of focusing field the mean

square of the disturbance/perturbation of amplitude is equal to
=2 et o oee]. (2.267)

if disturbances/perturbations in the different periods are considered

independent variables and equally probable. Let us sum up
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disturbances/perturbations on the basis of all independent sources of

errors in each period

As a result we will obtairn

R
A=) -5 T axi— -5 . (2.208)
2 !

b

Let us cohnect now values Ax and A(dx/d7r) with errors in the
electrical and design parameters in each period. Let us consider the
following basic sources of errors: 1) the parallel displacement of
the magnetic axis of lens relative to the axis of channel; 2) the
inclination/slope of the magnetic axis of lens relative to the axis
of channel; 3) the rotation of the median axes of lens around the
longitudinal axis of channel; 4) the divergence of the gradient of
focusing field from the nominal value. For simplification in the
problem we will not examine the longitudinal displacement of lenses
relative to calculated position. The effect of latter/last error is
small. For example, in the accelerating system with drift tubes the
displacement tolerance of tubes, connected with the longitudinal
vibrations of particles, proves to be several orders harder than
displacement tolerance of quadrupole lenses. Let us introduce the
perturbing factors into the equation of motion (2.62). First, there
are disturbances/perturbations, which displace beam as whole. These
disturbances/perturbations are connected with the

departure/attendance of zero-field from the optical axis of channel.
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I1f coordinate x, is counted off from the magnetic axis of lens, then

Xy=xXx—x(1).
where x(r) characterizes the divergence of magnetic axis from the
optical. In the second place, there are parametric
disturbances/perturbations, which change function Q(r):

Qi (1) =Q (1) +8Q (7).
Thus, the equation of the disturbed motion takes the form

QU —a) (x—%) =0, (2.269)

where
(2.270)

ol

Taking into account the smallness of values x, a, equation (2.269) can
be simplified: .
W+Q(l +a)x=Qx. {2.269a)

Parametric effects are connected with the rotation of median axes and
the errors in the gradient. Parametric disturbances/perturbations act
on the particles differently, during the dependence on the amplitude
and the phases of the fluctuations of each particle, and their
resultant action is evinced by an increase in the transverse
sizes/dimensions of beam. The divergences of magnhetic axis from the
optical cause the oscillations of beam as whole. We will search for

the solution of equation (2.269a) and in the form

x (T) = xo(T) 4+ Ax (v),
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where function x,(7r) - particle trajectory in the ideal channel.
Initial conditions for x(r) and x,(r) at the entrance of each lens
coincide:

Ax (0)=0: _\%(0)=U.

Let us assume that occurs the parallel displacement of the
magnetic axis of lens relative to the axis of channel to value Ar,.
Equation (2.269a) is reduced in this case to the form

A+ Qx=Qdr,.
We approximate focusing fields by "sguare wave". Then toward the end
of focusing lens (r=D/S)
Axy = (l‘— cos K) Arp;

dI¢

» 2.271
“ ——B—KsinK_\ro. ( )

A

Solutions (2.271) are obtained analogously with expression (2.164).
For the defocusing lens are valid the same formulas with replacement

of K by expression iK.
Page 141.

Subsequently let us rate/estimate allowances in the
approximation/approach of thin lenses K?<<l. Because of a good
convergence of the obtained series/rows the approximation/approach of
thin lenses in this case it is possible to use at any values of K:3:<1,

In this approximation/approach

1 dxg SK2 .
AX¢ x TKI_\A); N —ET x —-—5— v_\fo. .
(2 27
sy dxa _ _ SK?
Ax“»\-—'_?‘l‘ Aro- A—d*r“ ~— D Afo.
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1f cccurs the inclination/slope of the magnetic axis of lens
relative to the axis of channel without the supplementary

i.splacement, <hen function . r. zakes the form

= T— - Y™ (2.273)

XlTl'—'D oS

where \-, -~ absolute shift of each end/lcad of magnetic axis.
integration of equation (2.26%9a) in the section of the focusing lens

gives in the approximation/approach of the thin lenses

! ogea . dagy SR .
,\X@:‘-—-EK Are: A -d—t=r_,5_\fu 2 9m )
Lo dr - i
Axg=, K'Are A - 2= -_sf?D— Arw.

JaT
Let us assume two lenses of different signs are
structurally/constructurally united. Then the error of their
general/common/total inclination/slope is accompanied by the errors

of shift. In this case
AX¢=7I{K:£,?‘ __Ll\.z ’_)‘_’KA -

A B SKT s SKY Ar, _ SK?

= e s . ..

dT D ;) 4 l“D\ h o~ ?‘D— Afk.
Let us examine now parametric disturbances/perturbations.
Deducting the equation of undisturbed motion (2.62) from equation

(2.269a), we obtain for Ax(r) the equation

(A5 +Qax= —alxe(v). (2.273)

Solution we will search for in the approximation/approach of thin

lenses. In this case the right side of equation (2.275) can be

considered approximately constant and assumed x,=A, where A -
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average/mean value/significance of envelope in the period of focusing
field. The solution of equation (2.275) tcward the end of the
focusing lens takes the form

P2 o

B (15 . R Sad
= 3. SN
Dh

Axg= —— K3 A =

For the defocusing lens K? is reversed the sign.
Page 142.

If there is an error in the field gradient, then according to

expressions (2.163), (2.270),

o= (2.277)
But if the median axes of gquadrupole lens around the axis of channel
sw. .4 through angle Ay, then the coordinate of certain point relative
to median axes :, n they will be connected with the coordinates
relative to the axes of channel with the relationship/ratio

(E,) [ cos Ay sinAyy x

1 _(-—sinmp cosA\p) (y}
Assuming that the lens is ideal, it is possible to write the
potential of the field of the turned lens in the form

U¢=G§nv

or in the old coordinates

Ugp=0Gxycos2A¢p— I? G (x® —y¥) sin 2A4.

B, = Gx cos 2A¢ + Gy sin 24y,

In plane X0Z
B, = Gx |1 —2(Ay)).
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Hence we have
a= —2(Ay). (2.278)
Let us convert the disturbances/perturbations of trajectories

(2.272), (2.274), (2.276) with the aid of the conformable matrixes to

the middle of the focusing section where . =y,
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Fig. 2.23.
Page 143.

Fig. 2.23 shows the diagram of recalculation for different type
focusing periods. The converted disturbances/perturbations let us
note by the asterisks

Axg—+ Axy; A,.t@ —~ _\..r;, 2,270,

Axy— Ax3y Axg—- Mg
Let us drop/omit recalculations, after assuming that they are
produced. Subsequently let us give the final results of calculation.
The contribution of aifferent errors depends substantially on the
structure of the period of focusing field. For example, in the system
FODO lenses are fastened independently and the random errors in their

position are not correlated. In the system FOD the lenses are

structurally/constructurally united, so that positional errors

store/add up. System FOFDOD is the combined case. The correlation
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between errors in the gradient depends on the diagram of supply. If
the pair of lenses is supplied by current consecutively/serially,
then this corresponds to system FCD. Complete root-mean-square
disturbances/perturbations in the period of the type FODO (errors are

independent)

Ax* =] Axg -l

A= oraxg - A

Since the formulas for Axx and Ax* are analogous, let us extract
formulas only for Axx., For the period of the type FOD we have
Ax*y="Axy — At

For the period of the type FOFDOD (see Fig. 2.23)

(Ax*) =1 (dxp—dx3 5 —(dx§~ dx] 5.

Index 1 relates to the left pair of lenses; index p - to the right.

Calculations employing the given above procedure give the
following results. In the systems FOD and FOFDOD the errors of
lateral misalignment and parametric disturbances/perturbations in the
first approximation, average out, since Ax, and Ax, have different
signs. The slant errors in these systems store/add up, since with the
change by the places for that focusing and defocusing of lenses
reverse the signs both in the value K? and in the average/mean shift
of the axis of each lens. The effect strictly of inclination/siope is

unessential, but the axes obtained with the inclination/slope of the

pair of the lenses of shift give considerable contribution, moreover




210
DOC = 82105202 PAGE -g=2-

the errors of shift in this case are not compensated, but they

store/add up.

Thus, in the systems FOD and FOFDOD of the
disturbance/perturbation of trajectories, connected with the errors
of parallel shift and the parametric errors, it is less than in the
system FODO. The disturbances/perturbations, connected with the
inclination/slope of axes, in the systems FOD and FOFDOD are more

than in the system FODO.
Page 144.

The thermal deformations of the rods of drift tubes usually lead to
lateral misalignment. In such cases the best results give systems FOD
and FOFDOD. The advantage of system FOFDOD over the system FOD
consists in the fact that the period FOFDOD is symmetrical; channel
FOFDOD it is easy to begin so that the matched initial conditions
would correspond to the crossover of bundle. During a good
temperature stabilization of rods the system FODO is more preferable,

since it is structurally/constructurally simpler.

Let us give the summary of the formulas, obtained as a result of
calculation employing the procedure indicated. Rms value of an

increment in the amplitude of transverse vibrations

(AA) = ‘/% | Zcasr+groanr].
¢

_ j




3—77
DOC = 82105202 PAGE 2%

Components of disturbances/perturbations the following:

1) the inclination/slope of the longitudinal axis of the lens
(Ax*) =a,K3(Ar): (Ax*) = b,K?*(Ar,);

2) lateral misalignment of the lens
(Ax*) = aK2(Arg);  (Ax*) = b:.K? (Ary);

3) the rotation of the median axes of the lens

(Ax)*=4a,K*A ) B9P ;. (Ax*)=4b,K*A ) (App:
4) the divergence of gradient from the nominal value

{Ax*) = a,K2A <EGG—\ ; (A,\.:‘) = b,K%4 <PG£> .

The values/significances of coefficients of a,, b,, a,, b,:

1) system FOD
— ¢ ]
1 2( ,; \l/g; b’ (l )1/:

1
a=(1—- M\ o bz-'l‘(*-;

77
2) system POFDOD (g - gap length between the lenses; see Fig.

2-23)

\? 5 g 1
a=}3 [\11.00) + 5 {1—5—-55,)]";

b, V2[l'—— _]1/2;
ay= V2 []__4_,(1_5]1/1;
wmr (14 (1= )+ £ -3 )]
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3) system FODO

S S IR SRR A L

a=gy [ (2 ) 1

%) o e . g ?.']1...

=10 — — .

A RE QLT
CO g R b g o gl
@R=|\'TDh,) "6 T2pTTDE) i

—— 2 - 1.

b=V2[ 1= 12 ]

Page 145.

Due to low values v, the contribution of sum <Ax*> usually is
substantially less than the contribution, introduced into an
increment in the amplitude by sum <Axx):

\AA>~-}/ S ZiAge (2.280)
Therefore the dlsturbances/perturbations of trajectories, connected
with the random errors, The less, the higher v, and the less the
hardness of lenses. Hence it is apparent that working value cos u
should be selected near maximum vy, decreasing, how this is possible
without noticeable reduction v, the value of hardness. Above they
arrived at the same conclusion, on the basis of the considerations

about the channel capacity and power scattered in the lenses.

From formula (2.280) it follows that the allowances for the
random errors in essence depend on coefficients of b,, b,. Table 2.2

gives the values of coefficients of b,, b, for different structures

in the zero approximation in K?, Table 2.2 shows the effect of
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different random errors in the focusing channel with the determinate

structures of period.

In practice during the calculation of allowances should be utilized
terms not lower than the first approximation on K?. Let us give for
the orientation the summary of allowances for the strong-focusing
system of the proton linear accelerator I-100 with the exit energy
100 MeV [14]. In this accelerator is used the system FODO (see Table
2.1) with the series feed of the lenses of one period. The length of
period S=28\; medium frequency corresponds cosu, 05 the average

coefficient of clearance (1.23) a™~0.25.
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Table 2.2.
1D
Koo 01 ®0015.1 6.0
"y I 1.4 0
ba 0 0 1.4

Key: (1). Coefficients.

Page 146.
Allowances are distributed as follows: Arp = Ar, =120 u;
A = r;f%$‘ = 1%, Allowances for the divergence of the magnetic axis

of lens from the axis of channel .Ar, A, are divided into two parts:
allowance for the position of the magnetic axis of lens relative to
the centerline of drift tube 90 u; allowance for the position of the
centerline of drift tube relative to the axis of channel - 50 u.
Expected increase in the aﬁplitude of transverse vibrations of
particles at the length of the accelerator

(AA) =083/ Ny mn.

e. Nonlinearity of Iocusing field. In the real cases it is
impossible to achieve absolutely precise beam matching with the
focusing channel. Let us assume in the channel is spread the
unmatched beam with the ratio of effective phase volume to the true

L= (2.281)

If channel is comprised of the ideal quadrupole lenses, then the
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phase volume of beam will rotate within the effective volume without
the essential deformations. Besides rotation it can take place and
another form of the motion of true phase volume within the effective
- wandering due to the coherent divergences, which appear, in
particular, due to the shift of the magnetic axes of lenses from the
axis of channel. In the linear focusing fields all these effects do
not lead to the irreparable deformations of phase volume, with the
virtually equivalent to its increase. But if focusing fields are
nonlinear, then phase volﬁme is distorted, since the frequencies of
transverse vibrations of particles with the different amplitudes are
different. As an example Fig. 2.24 shows the form of the phase volume
of beam after its passage through the accelerator with a number of
periods of focusing field ¥y =8 and cosp,= 03, where y, - frequency
of small (linear) transverse vibrations. The ratio of effective phase
volume to the true is accepted by equal to £,=2, and the divergence
of field from the linear value/significance on the radius, equal to
the amplitude of oscillations, composes 1l.l1o0/0. As can be seen from
Fig. 2.24, the nonlinearity of the fields of lenses leads to the
distortion of phase volume. Bulk of particles continues to remain
within the limits of the ellipse, which limits phase volume at the
entrance of accelerator. But the particles, which caught into the

ejections (not shaded in Fig. 2.24), should be considered lost, since

after the output of beam from the channel they, as a rule, no longer

can be used.
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Fig. 2.24.
Page 147.

Let us calculate the portion of the lost particles, on the basis
of the fact that the phase density is distributed evenly. Let us
disregard/neglect for simplicity the defocu<ing action of
accelerating gaps and will examine transverse vibrations of particles
in plane X0Z of the channel, comprised of the imperfect lenses.
Substituting field expression of imperfect lens (2.32) in the first
equation of motion (2.51) and converting/transferring to the

dimensionless variable r, we will obtain

Ll
dtd

+Q s+ I Ao ] o, (2.282)

where G - value of fieigigradient on the axis of lens. In the first
approximation, the ratio of percentage distortions .. (determined in
essence by the profile/airfoil of pole) to the value of gradient on

the axis from the longitudinal coordinate does not depend. We will

search for the solution of equation (2.282) in smooth
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approximation/approach (2.222), after being restricted to the first

two nonlinear terms. By assuming/setting
= X3 - 59

¥ XY =9y
and by averaging equation (2.282) for the period of focusing field,

let us arrive at the following equation for the slow component of the

trajectory:

Lo R G- bR CR-L S [2.0%5)

The medium frequency of small oscillations y, is as before
determined by equality (2.229), and function q(7) - by equation
(2.224) and by conditions (2.226), (2.227). Let us multiply equation
(2.283) by dx/dr and will integrate. As a result we will obtain the

first integral

s dx ~ 2 . . a e
_.df_ — iV (\) = 0. (2.284)

where

V) =Xi— Xt 2 A0 s xn - 20— X0 (2.285)

Here X, - amplitude of the oscillations of the slow component of

trajectory. According to expression (2.284),

1 dX
dt=-— ——=.
Ba }y V(X

Hence we obtain the period of oscillations of the slow component of

trajectory with an amplitude of X,

Xo )
2 _ 44 (2.286)
°

[
L,
FS

Y V(N
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A A0 MR oA i 5, RS S Ak SR ol Aot 5 e 1 i

Let us substitute function (2.285) into integral (2.286) and is
decomposed denominator in the series/row according to the degrees of
the low values A,,/G and A,./G. Being limited to the linear terms of

resolution and by integrating, we will ok:tain

U—ly

s 1679 x¢ —2.2 220 X3, (2.287)

Let us note that wvalues

ABy=ApXs By = AnX}
are, according to expression (2.32), the divergences of field on
radius X,, by the caused corresponding harmonics, from the ideal

linear value/significance of B=GX,. Thus,
A

-]

ABy _ 4

h—p: A8 A5y
= 16522250 =

U ’ 8

I‘Qm

(2.288)

The relative deflection of frequency from the frequency of small is
approximately equal to the doubled relative deflection of field from
the linear value/significance on the radius, equal to the amplitude

of transverse vibrations.

Fig. 2.25 shows the dependences of a number of lost particles on

value AB/B at the different values §, for the accelerator whose
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parameters are stipulated above. Curves are obtained by the

-
-

2

Wl

calculation of areas on the graphs/curves, analogous to 3. 2.2« [

Trom the zrarvhs on.Eig 2.25 it

is evident that a number of lost particles noncritically depends on
the value of disagreement/mismatch £(,. If we allow loss by 10o/0 of
particles and value of disagreement/mismatch not worse §{,=2, then
allowance for the divergence of field will compose AB/B~~0.50/0.

Taking into account the linear dependence of phase change of small

oscillations on 7 at the length of accelerator, it is possible to

obtain formula for evaluating the standard deviation of field from

the linear within the limits of the assigned useful aperture

AB _ 45 o
'ET"”'RZI9°‘ (2.289)

where Vs -~ total number of periods of focusing field at the length

of accelerator.
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Fig. 2.25.
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§2.9. Focusing by longitudinal magnetic field.

The basic advantages of the system of focusing, which uses a
longitudinal magnetic field of solenoids, in comparison with the
strong focusing are structural/design simplicity and facilitation of
requirements for the allowances. At the same time focusing by
longitudinal magnetic field possesses the essential
deficiencies/lacks which are examined subsequently. Due to these

deficiencies/lacks the longitudinal focusing fields in the
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contemporary linear accelerators find thus far only limited

application.

During calculations of particle dynamics we will consider
longitudinal magnetic field uniform. Real accelerating field let us
replace with the equivalent traveling wave. It is obvious that the
obtained results will relate to the particle acceleration in the
traveling wave and to the particle acceleration in the field of

standing waves with the smallness of a partial increase in energy.

The components of electric field take the form [see expressions

(1.43), (2.9)]

E.=Ecosw 11— % .
N .

Components of the magnetic field
oE, . x of, . .
Yy By—_.-._—, B.=B.

BS=—?§'-7'_' .)cz dt -
Here B - external focusing field. Field. By hypothesis B=const. In
traveling wave-%?—=-—v.%%n Projecting/designing equation of motion

(2.5) to the transverse coordinate axes and substituting expressions

for the components of electrical and magnetic fields, we obtain

dps dy ex oF. .
r i i M U U 290
fﬂ’.a_eaﬁ_ﬁfL(l_ge) 9F; 22900
@ ar T e
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The equation of longitudinal vibrations retains form (2.50), if we
disregard/neglect the small terms x(dx/dt) and y(dy/dt). Assuming
that the mass of particles is changed sufficiently slowly, let us

rewrite equations (2.290) in the form

d*x _ eB dy e ol
drr T mgy  at 2.'710-\:‘ CE

RIS
a eB  dx v aF, (2.291,
25T T myy e T 2wy U

Page 150.

According to expressions (1.70), (2.12),
e oE, _ sin ¢
~ e =0 YR (2.292)

wvhere @ - relativistic frequency of small longitudinal oscillations.

Let us introduce for the decrease of recordings the designation

_oO: Sing
Q=9 Sng, - (2.293)
Value B
@ = Z;W (2.294)

is frequency of the Larmor precession of particles in the magnetic
field. Taking into account designations (2.293), (2.294) we have

d3x a  1ey,.
am =200 5+ 7 Qex;

a (2.295)
Fre = — 200 g + 7%y

Together with the equations of motion in Cartesian coordinates

(2.295) let us examine equations in polar coordinates 7, ¥:

X =rcos¥; y=rsiny.
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Equations of motion in the polar coordinates can be obtained directly

from expressions (2.295) by the appropriate replacement of the

variable/alternating

2 Ie
%:r!\% +2er‘i—‘f-L,Qé
S g (2.296)
PEY g, 4 __odr dy
drr = T49Ly ar " dr

Let us multiply the second equation by r. Assuming/setting w.=const,

we obtain

d r 3d_\p_$- ’\o= ‘
E—\f ar wyr J 0.

Thus, one of the first integ-als of equations (2.296) is equal to
r ( =24 mL> =M, (2.297)

where M=const. Ravenstvo (2.297) is called Busch's theorem. It is

possible to show that Busch's theorem (2.297) is valid in the general

case when @. - variable quantity [64]. Let there be at moment/torque

o -
t-0: r=r,; d—‘f=%€ or=0f. Then

M =1t ($o+ @}).
Page 151.

Let us assume that the particles enter into the focusing channel from

the region where there is no magnetic field. In this case the

constant value
M=f:\.Fo
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makes physical sense of the moment of momentum of particle with the
single mass relative to the assigned axis of channel. If particle
enters into focusing field, without having initial rotation, then in

the field it will rotate with an angular velocity of
= (2.208,
In the homocentric ray, i.e., in the beam, which possesses zero phase
volume, the moment of momentum is equal to zero for all particles. In
the longitudinal magnetic field all particles of homocentric ray will
rotate with identical angular velocity (2.298). When the disordered
scatter of transverse thermal velocities is present, there is a
scatter along the moment of momentum. Let us assume that the positive
and negative values of the moment of momentum are equally probable.
Then the average/mean value/significance of the moment of momentum is
equal to zero and =

@ T

The angular velocities of single particles in the focusing field

depend on the instantaneous value of the radius:

Let us substitute this expression in first equation (2.296):

e+ (ot—g% =2 0. (2.299)
Expression (2.299) takes the same form as equation for envelope of
particles, obtained in theory of strong focusing. However, the
physical sense of equation (2.299) is another - this is equation not

for envelope of particles, but for a radius - the vector of any
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particle relative to the chosen axis. If we place the moment of
momentum equal to zero, then equation (2.299) is simplified:
T —lwi-gQ r=0 (2.300)

With the zero initial moment of momentum a radius - the vector of
particle varies according to the sinusoidal law with a frequency of
wr = l/wL——;—Q., 12,300
Homocentric ray is confined into the point through each half-period

of the radial oscillations

Le _av (2.302)

Page 152.

In the absence of accelerating field the frequency of radius-vector

coincides with the angular frequency.

The solutions of equation (2.299) are the moduli/modules of the
corresponding complex solutions of equation (2.300). Consequently,
the solutions of equation (2.299) are stable, if are stable the
solutions of equation (2.300). Stability condition directly follows

from equation (2.300):
ol >0 208 (2.303)

sing,
Let us require so that the stability of trajectories would be
retained in all phases of particles within the limits of the

separatrix
P 2‘Pn<‘P<—(Po-
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When ®= —% condition (2.303) is satisfied automatically. This is
connected with the fact that in the positive phases accelerating
field focuses particles. When ¢=2¢, inequalitf\(2.303) is retained,
i ®L, > Q%cos q,.
Since virtually Jcosq, =1, the latter/last condition can be
simplified

oL > Q. (2.304)
Taking into account that the frequency of small phase oscillations in
the process of acceleration and diabatically decreases, beginning
from the initial value Q(0), it is possible, in particular, to select

wr =9 (0).

In the focusing system with the longitudinal magnetic field
analogous with the strong-focusing system occurs the parametric
effect of longitudinal vibrations on the radial oscillations. Let us
examine the particles, which accomplish small longitudinal vibrations
(2.243) and not possessing initial rotation. The rad!él fluctuations
of such particles are described by the equation

Z—:;— + [mi——;—Q’-—%Q’Q ctg @, sin Q¢ ] r=0. 7(2.305)
By the replacement of the independent variable

Q = 2nx

equation (2.305) is converted to canonical form (2.108), moreover

= (202

a="3 —2; g=0ctgy,.

Stability regions are depicted in Fig. 2.11, Assuming/setting, as for
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the strong-focusing system, cos4s;=08 and ®= ¢,, we have g=0.86.
Page 153.

If in the beginning of accelerator is satisfied condition (2.304),
which ensures the stability of all particles, then coefficient a
proves to be equal to 2 that it guarantees the work higher than first
region of parametric resonance. Subsequently the frequency of small
decreases. If %}=umnn. then operating point on diagram 2.1l is
displaced horizontally to the axis of ordinates. But if

oL =R(0)=const, then operating point is displaced upward and to the
left, passing, as in the case of strong focusing in cosy,=const, the

region of multiple parametric resonances.

Let us determine.a radius of the focused beam depending on the
magnetic field strength and phase volume of beam. Equation (2.299)
can be rewritten in the more compact form, if we use designation
(2.301):

%+¢r_:f; =0. (2.299a)
The first integral of this equation is the following
1=(%>z+m3r’+‘—ﬁf . (2.306)
Taking into account expression (2.297) first integral (2.306) can be

represented in the form
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[ =0 4-w}r?,
wvhere

g = afdb _dv Tt
- T\ dty L ae dr |

is the square of the disordered component of complete linear velocity
in the plane, perpendicular to the axis of bundle; dr/dt - radial
velocity; r%% - linear peripheral speed. Let us examine particles
with the given value of integral (2.306). The greatest
removal/distance from the axis they reach particle with the zero

initial moment of momentum with dr/dt=0
. wifgmkc =L

[= lwax

et A -cgreatest value/significance of integral (2.306) for the
particles in the beam. Then a radius of beam R is determined from the
expression -

R= l_L:an i2.307
Let us connect value lux with the transverse phase volume of beam.

Fig. 2.26 gives phase particle trajectories with given value [=lua

on plane r, dr/dt. The family of phase trajectories is constructed

graphically, on the basis of the relationship/ratio.- - .
& _yi=vVm.
Page 154.

The function

V(r)=ar? - l:;
is the analog of potential energy. The actual values of radial
velocity occur with V(r)gI. With M=0 phase trajectory takes the form
of ellipse. With M#0 phase trajer*ories f/ 11 inside this ellipse. In

accordance with that outlined abov~ sf waximum removal/distance from
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the axis they reach particle with M=0. Thus, for solving the question
about the sizes/dimensions of beam it suffices to explain the value
of the phase volume, occupied by the particles, which do not have

initial rotation.

Let us assume that the beam possesses axial symmetry and its
phase volume in four-dimensional space x y. p. p, is limited at the

entrance of the focusing channel by the ellipsoid
a (x* = y?) = b (pk + p}) —
— 2c(xpe—yp,)=1. (2.308)

The projection of phase volume on plane x. p, exists

ax? —bpy ~ 2cxp: = 1. (2.309)
Actually/really, point in the curve, which covers projection,
corresp.ads to maximally possible value/significance P: for each

fixed value of x:
a_px_o. ap:_o

oy — ' dp,
According to the rule of implicit differentiation
Oc_ _OF [OF  dp._ _OF |0OF
9y oy [ 9px’ p, dpy | 3px*
where F(x, ¥, px, Py)- - left side of equation (2.308). The maximum
impulse/momentum/pulse P:x occurs at values Y Pv of those determined

by system of equations
9F o, 9 2.310
dy—o‘ 3, 0. ( )
Producing particular differentiation, we obtain
ay+cpy=0;
¢y +bpy = 0.
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Fig. 2.26.

Page 155.

Determinant of this system of equations
A =ab-—-c2

The volume of four-dimensional ellipsoid (2.308) is equal to

V=2,
so that A#0. Hence y—=p,~0 we obtain projection (2.309). Let us pass

in equation (2.308) to the polar coordinates

art— b (p} - p§) — 2crpr =1

here dr &y

Pr=m 5. Pp¢ -Mror.

Particles without the initial rotation occupy on plane " Pr the
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region

ar2~hp"{_2cyrp'=]_ (2.\5[1'
area of which coincides with the projected area (2.309). In
accordance with determination (2.2) the invariant phase volume,

occupied by such particles, is equal to

Vo= ! \ p-dr. (2 310

amed

If the representative points of particles completely fill region
within the maximum phase trajectory, which corresponds I=luaxc. M=0
(see Fig. 2.26), then beam is matched with the channel and its radius
(2.307) is a constant value. Maximum phase trajectory on plane r,

dr/dt is described by the equation of the ellipse

.
r2 re

=1 (2.313)

Tuake lwake
wl

and covers the area

. nl
K rdr= MaRce i
J W,

Replacing in integral (2.312) radial impulse/momentum/pulse by its

expression through the radial velocity, we obtain
Vg = Yane (2.314)

[

Hence taking into account (2.307)

Va=YoR2 (2.315)
Channel capacity with a radius of the aperture opening/aperture a is

equal to

V=Y wa’. (2.316)

o

Page 156.
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The emittance of beam and the acceptance of channel are connected in
accordance with the phase volume of beam and channel capacity with

relationships/ratios (2.4), (2.127).

To match beam with the longitudinal focusing field it is simpler
than with the strong-focusing channel, since in the longitudinal

field to match it is necessary only the diameter of beam at the

entrance.

1f the region, occupied by the representative points of
particles on plane r, dr/dt, does not coincide with ellipse (2.313)
with some value/significance Ilwxe. then beam proves to be mismatched
with the channel. Let us describe around the phase‘volume of
unmatched beam on plane r, dr/dt ellipse with the relation of
semi-axes @- The area, included by this ellipse, corresponds to
effective phase volume Vige. True phase volume rotates within the
effective, so that the envelope of unmatched beam oscillates with a
frequency of 20.. If the ratio of the effective volume to the true
comprises {,>1, then the maximum size of unmatched beam will be v,

times more than a radius of matched beam with the same phase volume.

In the presence of high-frequency accelerating field the
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permissible value of the induction of the longitudinal focusing field
is bounded below by stability condition (2.304). Let us examine two

possible versions of the selection of focusing field.

1. Frequency of Larmor precession at each moment of time
coincides with instantaneous value of frequency of small longitudinal
vibrations

oL =9 (). (2.317)
With an increase in the energy of particles the required frequency of
Larmor precession will descend and respectively it will be possible
to decrease the induction of focusing field. In this case, according
to expression (2.301), for the synchronous particle

w,(t)=;%9(t). (2.318)
Since the phase volume of beam (2.315) is invariant, radius of

matched beam is inversely proportional Vey. Hence
, |
Ty amyom

and with an increase in the energy of particles the size/dimension of

beam will grow/rise. This increase/growth is very considerable.

Page 157.

The frequency of small longitudinal vibrations is proportional

ylp-r (1.89); therefore

R == pi/s,
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or in nonrelativistic approximation/approach R == W!s*. For example, for
the linear accelerator of protons I-100 [14] an increase in the
radius of matched beam at the entire length of accelerator would

comprise )
":N__ oy l.‘\lg

A
FANY

Even in the ideal channel without the errors the amplitude of radial
oscillations toward the end of the accelerator would grow almost two

times.

2. Frequency of radial of synchronous particle is constant along
axis of accelerator. Let us assume

w0 (0) =Q(0), (2.319)

then Q)

wr==5;i§. (2.320)

A radius of matched beam will remain in the nonrelativistic
approximation/approach constant along the axis of accelerator, and
the frequency of Larmor precession will relatively slowly descend

nw) Q) 5

o () =773 y/14- Q(m] : (2.321)

The matched beam of relat1v1st1c particles retains a constant radius
along the axis of accelerator when o,y=const. If is satisfied
condition (2.319), then

20 y(O /5

o (t) ===

p 2 399
72 Y0 POk (2.322)

-t

In relativistic regioni of energies the induction of focusing field

with the retention/preservation/maintaining of the sizes/dimensions
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of beam descends considerably more rapid than in the nonrelativistic

(2.321).

The three-dimensional/space period of radial oscillations for
the particles with zero initial moment/torque L.: is determined by
expression (2.302). Let L - period of the arrangement of solenoids.
If L is commensurated with L. or more than L~ then should be
considered the periodic structure of focusing field,
converting/transferring from the equations with the constant
coefficients for eq  rions with periodic coefficients [60, 72] and
calculating the appropriate functions of Floquet or the matrix/die of
period L. But if L < L.. then nonuniformity in a number of ampere
turns along the axis can lead only to a small "vibration" of
trajectories by disregarding which let us reduce the problem with the
aid of the smooth approximation/approach to focusing examined above
in the stationary field. This case is feasible, in particular, in the

system with drift tubes, if solenoids are placed into each tube.

Actually/really, let L=X.

Page 158.

Then

or taking into account expressions (2.318), (2.320)

L 1 Q
L=ys e <L
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The effective magnetic field on the axis of channel, which is
determining the frequency of Larmor precession, is equal
B=upnl,
where to u,=47-10-" H/m; n - average number of turns, per unit of the
length of channel..Let n, - number of turns per the unit of the
length of solenoid. Let us assume that the solenoid completely fills

the length of drift tube. Then

ng 1

n l—a ’

where a - coefficient of clearance. The magnetic field on the axis of

solenoid, which is determining ampere-turns n,I, is equal

By = 2 = oo, (2.323)

In each solenoid is scattered the power, equal to

P = 2-10¢ 9‘2‘;—,*"’ LB, (2.324)
where L. - length of solenoid; a - radius of the internal cavity of
solenoid; b - thickness of the lap; p - specific resistance of
lead/duct, Q-m; f - duty factor. As can be seen from expression
(2.324), isolatable power with given B, linearly depends on a radius
of aperture a in contrast to the dissipated power in the quadrupoles
vhere the latter with the assighed field gradient is proportional to

the fourth degree of aperture.

One of the deficiencies/lacks in the focusing in the
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longitudinal magnetic field is the appearance of large forces of
interaction between the solenoids. Let us examine, for example, force
between two single-layer solenoids of radius R with numbers of turns
N,, N,, distant behind each other at a distance g. Let the lengths of
solenoids L,, L, substantially exceed their radius: L,,>>R. The

mutual inductance of such solenoids is determined by the expression

AN (Na R ——
M= R (VR =g —p). (2.325)
Interaction energy of the solenoids
W =Ml l,. (2.326)

Substituting expressions (2.323), (2.325) into equality (2.326), we
have
W=125-10°() R* — gt — g) R3B".

Page 159.

The force of interaction between the solenoids exists
F o=,

dg
Since 1 kg=9.8 N, the force of interaction in the kilograms is equal
to

F 1,28.103 |-|.»—f"—-__, R*B:. T 2.527)

In contrast to the quadrupole lenses where the fields of adjacent
lenses are virtually divided, in the solenoids the fields strongly
engaged, that also leads to the large forces of electrodynamic

interaction. These forces completely are applied to the end

solenoids. For drift tubes, which have adjacent tubes from both
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sides, the forces to a considerable degree are balanced and there
remains only difference force, connected with the dissimilar gap
lengths between tubes. In the long resonator, loaded with drift
tubes, adjacent clearances differ along the length to value
Ag -ar\p.

Net force, equal to a difference in the forces, that act from the
side of adjacent solenoids, there is

AF— — Ag,

or

AF = —1.28. 10°——————- Ag ke (2.32%;
(RP2—-g%)

For calculating the allowances for magnetic and
structural/design errors in the focusing channel i1t is expedient to
return to Cartesian coordinates, since in these coordinates equations
of motion are linear. Let us first examine the character of
trajectories in the Cartesian coordinates. Constants of motion
(2.297) and (2.306) in the Cartesian coordinates take the form

M=xd—y-—y‘“—m,_(x —y?) (2.329

. ) , dx > 8 o
S+ () = b —wh (B2 x -y 2330
We will search for the solutions of equations of motion (2.295) in
the form x = Asin(w;t — 6):
y = Acos(w;t - 96).

Substituting these solutions into expression (2.295), we obtain the

characteristic equation
w} — 200, — 3 9 =0.
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Frequency ; has two values
Wy =Wy, — Wy,
We = Wy — W,
The general solution of equations of motion (2.295) takes the form
x=A;sin(w — B,) — 4, 5in (wal — By);
Y= Ay cos (0 — V) — A cOS (wal — B.).
It is expressed the amplitude of oscillations A,, A, through the

(2.331)

appropriate values of constants of motion M, I, after substituting

expressions (2.231) into integrals (2.329), (2.330):

A = 217 VT—3e,M;

. (2.332)
Ay =5 VT 20.0.

They ére of interest of the projection of trajectories on the
transverse plane XOY. Let us examine two cases: accelerating field is
absent (Q,=0) and particles are accelerated by high-frequency field
@y =#0). -

Case cthe first Qy=0.

In this case o, =w;; 0,=20; 0,=0 and solutions (2.331) take the form

x = A, sin 8,4 A, sin (20t + 6,); (2.333)
y= Az Cos 62 -+ Ag cos (2(I)Lt -+ 9,).

Bach particle on plane XOY rotates with an angular velocity of 2w
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around the point with coordinates x,=A,sin®,, y,=A,cos®, (Fig. 2.27).
The position of center and radius of gyration depend on initial
conditions. The maximum distance of each particle from the axis is
equal

Tyake = .", - "l

According to expressions (2.329), (2.330),
_Loux 3___‘,"1,y_"'3
=20 M="7 "¢, (2.334)
so that radius of gyration is equal to
1 1, S 5 19=
A‘=ml X2+ 2, (2.335)
With an increase in the magnetic field the radius of gyration
decreases inversely proportional to the value of field. For the
particles with the zero initial moment of momentum A,=A,. The

trajectories of these particles run through the origin of

coordinates, in other words, through the axis relative to which M=0,.
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Fig. 2.27.

Page 161.

Since any inscribed angle is two times lower than the central angle,
which rests on the same arc, the angular rate of rotation relative to
the origin of coordinates two times less than 2w, i.e., is equal to

the frequency of Larmor precession.

Second case ;= 0.

In this case there is a physically chosen axis - axis of
accelerating field. Each particle rotates with an angular velocity of
0, <20. around certain axis which in turn, relatively slowly (with a

speed of w.- v, —w.) rotates around the axis of accelerating field.

For the particles, which achieve maximum removal/distance from

the axis, in both cases of M=0, A,=A, and, according to expressions
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(2.307), (2.332).

Thus, particle trajectories, which do not possess initial rotation
and which achieve maximum removal/distance from the axis, take the

form

= (SN (un! 4 By) — Sin (wai — )

SR

3 S 80
U= 5[OS 1wyl — By} = COS (sl — 1),

Let us establish/install now allowances on an error in the
focusing field. The rotation of solenoids around the iongitudinal
axis in view of the axial symmetry of field does not cause the
disturbances/perturbations of motion. Allowance for the parallel
displacement of solenoids relative to longitudinal axis is caused
only by the inclination/slope of field lines in the gaps/intervals
between the solenoids and in the first approximation, it is possible
not to consider it. Basic errors in the focusing field, which call
the essential disturbance/perturbation of transverse vibrations, are
connected with the inclinations/slopes of solenoids from the rating.
For evaluating the allowances let us examine only those particles
which achieve maximum removal/distance from the axis of channel.
According to expressions (2.307, (2.330),

e “dy™t

) PR _[;Qf,(,\":-!-y:). {2,330

w;R? =
Let us differentiate expression (2.337), let uc square and it is
averaged on all disturbances/perturbations and on all phases of

transverse vibrations of particles. We will consider random
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disturbances in all solenoids equally probable and independent
variables. As it is possible to show, utilizing expressions (2.336)
and taking into account the equal probability of all values of the

phases of transverse vibrations,

X =Lv£4’ =

Page 162.

For the root-mean-square disturbance/perturbation of amplitude we

obtain the expression

,Q

e RGN I R 1=t

\zw
Disturbances/perturbations of coordinate give the contribution to an
increase in the amplitude only in the presence of accelerating field.
Subsequently let us examine only channel with the constant frequency

of radial (2.320). In the larger part of this channel

7 QN2 Q\l

(20, ) =
(6R>zmir(bi).

<1,
therefore

Let there be in the channel N:. solenoids. Then toward the end of the

channel the root-mean-square increase of amplitude is equal
(AR>=VTF(5£). (2.338)

Let us connect 6x in one solenoid with the slant of solenoid to

values Al in each of the coordinate planes and with the instability

of field AB/B. Taking into account .that in the larger part of channel
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R . :

i, <1 let us disregard/neglect the difference between values or
and o.. which considerably simplifies estimation. Then w, =~ 2w, w,x0
and from expression (2.336) we have

ax

5= wLR cos (2wpt — 9,5,
du :
I = —w Rsin (20,1 — 8,).

Transverse outlet velocity from the solenoid is connected with the

inlet velocity with the relationship/ratio

dx ‘dx ™ . dy. .
&L, @ ), CsK G sinkK, (2.339)
where L. - length of solenoid, and
2B
K=L% (2.340)

characterizes the "hardness" of solenoide’.&lg,q, angles of the slope
of the axis of solenoid to the axis of channel in each coordinate
plane. In the presence of errors u. g, MK, we have
XL, = Va.+ (Xg—vat) cos (K + AK) + (go—ra,) sin (K -+ AK). (2.341)
Deducting expression (2.339) from equality (2.341), in the first
approximation, we obtain
8x = (1 —cos K) va, — va,sin K — (xosin K —yocos K) AK .

Page 163.

Is averaged the square of the disturbance/perturbation of
transversing speed. Taking into account that

(@) = (@)= & \AL;
c

tode=0; K _ 18
oo=L: T =7

we obtain the equality
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Hence

First term in brackets (2.342) characterizes the external
disturbance/perturbation, which leads to the beam displacement as a
whole, and the second connected with the parametric

disturbance/perturbation, depending on the amplitude of oscillations.

Let us examine the possible parameters of the focusing channel
with the longitudinal magnetic field for the linear accelerator of
protons. As the initial datd let us accept the parameters of the
proton accelerator I-100 [14]: A=2 m; W, =2.7-10"% W,.=700 kev;'Wx=100
MeV. At the entrance 2(0)/w=9.35-10"*. Let us assume in accordance
with expression (2.319) v (0)=Q(0) and let us accept w.=const at the
length of accelerator. According to formula (2.320), o, =6.60.107.0. At
the output of the accelerator [see expression (2.321)] we have

0, =08Q(0). From formula (2.294) it follows: B,..,=18400 G; Buw=14700G.
With the coefficient of clearance a=0.25 the fields, created by
solenoids in drift tubes, must be equal tO: Byuaa=24500 G; Bywen=19600

G.
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Let us accept the phase volume of beam equal to '»=0. cm.mrad.

With this phase volume a radius of matched beam in accordance with
formula (2.315) will be R=0.22 cm. As it will be shown in the
following chapter, during the numerical estimation of the matched
initial conditions for the strong-focusing channel of the same
accelerator, in the system of quadrupole lenses R,=91.35 cm; R.=0.15
cm. Hence it is apparent that during the optimum identification of
parameters of both focusing channels the size/dimension of beam in
the longitudinal magnetic field proves to be smaller than the maximum

size of beam in the strong-focusing channel.

The hardness of solenoids (2.340) in the beginning of

sinh 2 = .
accelerator is equal to K=1.15. We have %g =09 =1 .If we assign
AB ) . . . .
5 =1!%. then the divergences of field from the rating in effect

will not agitate trajectories. The basic perturbing factor is
connected with the inclination/slope of the axes of solenoids. From
formula (2.342) we will obtain |

(ARY = 2V N (Al). (2.343)

Page 164.

Analogous relationship/ratio for the strong-focusing channel took the

form (see S 2.8)
(A4) =~ 0,83 | Ny.

A number of solenoids is equal to the doubled number of periods of
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focusing field. An identical increment in the amplitude in both
systems of focusing we will obtain with A/ =034 mm. This allowance
completely can be returned to the mechanical adjustment of the axes
of drift tubes, so that it proves to be six times of wider than the
appropriate allowance with the strong focusing. Thus, the adjustment
of drift tubes with the solenoids considerably is facilitated in

comparison with the adjustment of the tubes, which contain quadrupole

lenses.

For evaluating the dynamic forces, experienced/tested by drift
tubes, and dissipated power let us assign the following
sizes/dimensions, entering formulas (2.324), (2.327), (2.328): a=1 cx

=5cMm g=2cm:R =35cu. Then the force, which acts on the end solenoid,
is F=470 kg, and net force, which acts on internal solenoids, AF~"~24
kg. Let us accept the duty factor of window with copper equal to
f=0.2. In this case the first solenoid of accelerator isolates power
Pnaw = 88 kW, and the latter - Puwx = 600 kW. The supply of solenoids by
direct current without the use/application of a deep cooling in this
case virtually is eliminated, hook as it is impossible to lead from

drift tubes the power indicated.

Accelerator 1-100 works by narrow pulses, which makes it
possible to utilize a pulse supply of magnetic lenses. With the pulse

supply the dissipated power can be lowered more than 100 times.




314

DOC = 82105208 PAGE 2f

Therefore let us examine the possibility of the supply of solenoids
by pulse current. This analysis is interesting and because the
general/common/total relationships/ratios remain valid also with the
pulse supply of gquadrupole lenses. Let the pulse current, which feeds
lens, be obtained by resonance capacitor discharge through the
valve/gate to the winding of lens. Let us assign two initial values:
with the duration of the half-wave of current T and with maximum
voltage across capacitor V. The inductance of winding is equal to

L =hN?, (2.344)
where N - number of turns in the winding, and coefficient k depends

on the geometry of winding. In particular, for the solenoid we have

4
k=577

(Le - the length of solenoid). Values A, D depend on a radius of the

internal cavity a and the thickness of the lap b;

9 4 b2

-

1 ,
Dzs-(a«w).

l
’
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During the capacitor discharge C to the inductance of winding L is
fulfilled relationship/ratio CV*=Ll?, moreover I'=n]| LC .Hence taking

into account expression (2.344) we obtain

T=2% N1

According to expression (2 323),

|
= — Bol..
NI p J0kc
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Thus,

. \'T i LR E
N =y e 12349,

/=;~_‘_‘i_ kL:, 12,540
Value of the discharge capacity

€= Lt 2ot
Hence it is apparent that at the given values of T, V, B, and the
geometry of windings a number of turns, the amplitude of current and
the value of discharge capacity for each lens are determined
unambiguously. For the majority of drift tubes 0 L. then
kL. = 4 = const, so that a number of turns in different solenoids does
not depend on their length. Amplitude of current and capacitance
value directly proportional to the length of each solenoid. An

increase in the magnetic field decreases a number of turns and

respectively increases current and discharge capacity.

The permissible working stress/voltage for the solenoids, placed
within drift tubes, can be accepted equal to V=1.5 kV. Let the
half-period of discharge be T=600 us; this provides the necessary
flat/plane part of the current pulse for the proton beams with a
duration of 10-40 us. In the parameters indicated the amplitude of

current will range from 0.9 in the beginning of accelerator to 12.2
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kava end/lead. Necessary capacitance value is changed from 113 in the
beginning to 1560 uF at the end. The available capacity of
capacitors/condensers will be 134000 uF. It is obvious that the use
of a similar power-supply system for the proton linear accelerator to

the energy 100 MeV is inexpedient.

Thus, in spite of the explicit advantages of the system of
focusing by longitudinal magnetic field, the large dynamic forces,
which appear between drift tubes, and the difficulties of the
realization of heat withdrawal or creation of pulse supply force at
present to turn from the use of this system to proton linear
accelerators on the middle of energy at the wavelength of

accelerating field 1.5-2 m.
Page 166.

An increase in the wavelength of accelerating field with the
fixed/recorded value of specific acceleration proportionally
decreases, according to expression (2.304), the minimally allowed
value of Larmor frequency and respectively the induction of focusing
field. In this case power consumption per the unit of the length of

accelerator and the dynamic forces between the solenoids descend

inversely proportional to square the wavelengths.
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$§2.10. High-frequency quadrupoles.

Longitudinal and lateral stabilities of particles in the linear
accelerator without the external focusing fields are incompatible
only when accelerating field is axial-symmetrical traveling wave. In
§2.1 it is explained that at the sufficiently low absolute values of
synchronous phase the accelerating clearances between drift tubes
focus particles. As long ago as 1953 Ya. B. Faynberg [73, 74] showed
that reaching/achievement of the simultaneous stability of
longitudinal and transverse vibrations possibly also in the case when
synchronous phase periodically reverses the sign along the axis of

accelerator.

In 1956 V. V. Vladimirskiy {34] proposed the method of
guaranteeing longitudinal and lateral stability due to the failure of
the axial symmetry of high-frequency field in the accelerating
clearances. In the form of an example work [34] examines the
introduction of "horns" to the accelerating clearance (Fig. 2.28a).
Horns create the electric field whose transverse components are
analogous to the field of electrostatic quadrupole lens. The
longitudinal component of accelerating field is utilized for the
particle acceleration, and transverse components - for the focusing.
A deficiency/lack in a similar construction/design is the decrease in

dielectric strength, caused by the introduction of horns to the

accelerating clearance.
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Fig. 2.28.

Page 167.

V. A. Teplyakov [35, 36] investigated the system, deprived of this
deficiency/lack. He proposed to make aperture opening/aperture in
drift tube not circular, but rectangular, moreover each subsequent
tube to turn on 90° by relatively by preceding/previous (see Fig.

2.28b). However, such a idea was expressed later by Fer and Lapostoll
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[37). One additional version, proposed by V. A. Teplyakov, it is
shown in Fig. 2.28c; the form of horns in Fig. 2.28c it is changed in
comparison with the form in Fig. 2.28a how is reached the best

configuration of the focusing components of field [75].

Let us examine field in the clearance with the more general case
of symmetry, than axial. Let the potential of field have two planes
of symmetry XOZ and YOZ:

Uix, y. 2y=U(=x. y, 2)=U(x. —y. ). (2,348,
the transitiorn from the point with coordinate z to the point with the
coordinate - z with the simultaneous rotation on 90° in the
transverse plane reversing the sign of potential, without changing
its value

Uix, y. 2)=—L(—y. x, —2). (2.349;
Point z=0 - the geometric center of clearance. The conditions of

symmetry (2.348), 2.349) satisfy fields in all clearances, shown in
Fig. 2.28.

We will be restricted to the nonrelativistic region of energies.
Then the equations of motion of particle in the accelerating gap take

the form
d3x
rr

ey .t ; 350
-B—ET=EEVCOS(0L ‘2~ )

= E.cosot;
Mo

diz e
-d—'i—a—”;;-E;COSmf
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Subsequently let us examine the motion of paraxial particles. Let us

expand the transverse components of field in the power series
Ecy(xoy, 2)=E; , (0. 0, 2)—

.y L Eey
T —5— (0.0, 5 x— —(w--(O. 0. Sy- ...

and let us hold down/retain the linear terms of resolution. Then
equations (2.350) for the transverse coordinates prove to be linear.

From the conditions of symmetry (2.348) we have

E<(0. 0, 22=E, (0, V. =0

3E.
dy

(2.351

9E,
(0. 0. z)=d—x—(0. 0, 2)=0.

Equalities (2.351) follow directly from those considerations, what

derivative of even function - function is odd.

Page 168.

From the condition of symmetry (2.349) we have

JE oE

(0, 0, 2= — 520, 0, —2); (2.352)
dE, JE, -
_bT(O' 0, 2)= —?(0' 0, —2), (2.353)

For simplification in further recordings all functions, undertaken on
the axis, f(0, 0, z) let us designate f(z). The equations of
transverse motion (2.350) can be now represented in the form

d*c e OEg .
W—E"—F(Z)COSQ"X,
e O, (2.354)
—I,—=—”-l;-—d;-(z)cosmt-y.
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Let us introduce the function
1 i OF aE
G(x, y. =5 ‘L—dx-‘(x. Y, 2)—~d;”—(x. Y, z)} . {2.355)
Since the derivatives of the components of field are connected with

the general/common/total relationship/ratio

0Ey . 9y 9E
ox oy~ T Taz

then
JEx 1 8E, |,
=7 e T ) 356

<. 00

%y _ 1 9E _g ( !
dy 2 02

In the axisymmetric field G(x, y, z)=0. Equalities (2.356) generalize
expressions for forces (2.40) for a broader class of symmetries
(2.348), (2.349). First terms in the right sides of equalities
(2.356) cause the defocusing of particles in the accelerating
clearances. Second terms, which are absent with the axial symmetry,
can the principle provide strong focusing. We will consider the
stability conditions of longitudinal vibrations as those carried out
and let us find the requirements, presented to function G(x, y, z),

which ensure the stability of transverse vibrations.

Let us expand functions %?%Z) and G(z) in Fourier series in the
] . : oE! s
period of the accelerating structure L. Function —;~(2). according to

expression (2.353), odd.

%:g)= 3 Ausin 22, (2.357)

LE T
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Function G(z), as this follows from equalities (2.352), (2.355), even

. ' 2
Giv= N Bocos 7T 5 (255
==y -

Let us assume that the accelerating clearance on its action is
equivalent to thin lens. Then particle displacements at the gap

length are not changed, but transversing speeds obtain the increases

Az da e tJE £

5=t \ ST icoser )

3 Toanth
v e o 9L a2
A =— y\ - Tcoswitn)
di my - . vy -

L

Let us disregard/neglect the effect of a change in the particle speed

at the gap length, after assuming

z 1 Y
Tet I(Z)=?+-w~ G. 12.300)
e > JE, . i
bl= —*m‘\ 'éz—(‘)cos(ﬂt (5ydz:
' L

by = ;%; S G(2)cos wt (2)dz.
L

Then, substituting expressions (2.356) in integrals (2.359), we

obtain
dx .
A gr=bx% .
i (2.361)
Aﬁ‘:byy‘
where = by +bs; b, =b,—ba. (2.362)

Let us introduce series/rows (2.357), (2.358) into the expressions
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for b,, b,. Taking into account formula (2.360)

ek .
b, = 4an_c rh sing;

Lk
fa = 8L~ N
’ '.‘.'II(’C Bk cos ¢

where k -~ multiplicity of the period of the accelerating structure;

L=kpBA. As a result for the refractive indices we obtain the following

expressions
ehk Ap B, ¢ T
be= gpe (2SI T BeOsq ‘
’ (2.363)
ehk A

X :
‘\—,—smcp—Bk cos ¢

YT 2mye 2 Y
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Page 170.

Let the period of focusing field consist of two periods of
accelerating structure (S=2L) and contains two accelerating
clearances. In each following clearance the electrodes are turned on
90° relative to preceding/previous, so that planes XO0Z and YOZ
transpose. The matrix/die of the period of focusing field can be
represented by the product

T=H, [HTH .
Matrix/die T corresponds to the period which begins and is terminated
in the middle of the idle gaps/intervals between the clearances; H -

matrix/die of the idle gap/interval

a-(1 %)
01
In this case it is assumed that the high-frequency field is

concentrated in the thin clearance. T and f[_ matrix/die of the

1 0\ = ,1 0
= . I'= .
(o 1): T=(5, 1)

The multiplication of matrices/dies gives

adjacent clearances

. kA .
cosp=1 -r-;-(b,—,-b,)-.- % (%)’b,b,.

Let us replace refractive indices with their expressions (2.363):

L . A2\ .
cosp=l+£ﬁo— A,.smq»(l +1—6§'7A.smq>>—

—% (5;;;:—’ AO’ /ﬂycos'w. (2.364)

'\ Ax
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Let us examine the components/terms/addends, entering the right

side of equality (2.364). Regarding

—%\ z)sm—dz

Let us take this integral in parts:

2

2nkz
4Q=T

id E.(z)cos T dz.

.2 ink
Ez{Z)Sln L Iz

e —

[Nl [N ol

The first term at both ends/lecads of the interval of integration
becomes zero. The integral, entering the second term, according to
expression (1.11), takes the form

{ E.(@)cos 22 B 2 dz=E,TL,
L

where E, - middle field; T - factor of transit time.
Page 171.

Hence
E T
A.— —4n '—5— .

Since A, <0 and, therefore, for the particles, close to the
synchronous, . Asing>0. second term in the right side of equation
(2.364) determines the defocusing action of high-frequency field.
Third component/term/addend decreases cosu and, therefore, is

described the focusing action of field in the clearance. Third
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component/term/addend depends on the phase of particle and middle
field, which in principle differs the focusing in question by
external quadrupole fields. Into all members of expression (2.364)
enters the combination of the parameters

n=— 5’*5'_ A

Replacing 4.. we obtain

AW,
(3

N =1k ‘_“l’—
where W,— current energy of synchronous particle; AW .-
maximally possible energy gain of particle in the period of the
accelerating structure

AWane =eEoLT.
Coefficient n can be also determined by the equality

y= —nsing,

where y - factor of defocusing (2.170). In further more conveniently
to operate with coefficient n, since it does not depend on the phase

of particle, which simplifies the comparison of the

components/terms/addends in the right side of expression (2.364).

Regarding coefficient B: it is equal to
By=2\G()cos i dz. (2.365)
L
aﬁ;t'g,_-average/mean amplitude value of the longitudinal component of

high-frequency field at the length of the accelerating clearance g:
Eq -_-.-% Q E.(2) da.

[

L

Then gE,=LE,, Expression (2.365) can be represented in the form

‘ Gcosz-n—zdz

B
B =21

ngz

1

L Eq
-EQG(z)dZ R
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vValue
;\' G cos 25;: dz
y 2.366)
‘ \ Ga:

[

L

is analogous to the factor of transit time and in the narrow
accelerating gaps is close to unity just as T. For the tubes with the

rectangular apertures in the first approximation,
Tg aa

T T igaa

where a - coefficient of clearance (1.23). For horned tubes 7;=
since function G(z), as function E£.(z), is approximately constant at
the gap length. The dimensionless quantity

Ky = ‘EIT § G (z) dz (2.367)
characterizes the geometry of high-frequency field in the clearance.
In the axisymmetric field Ks=0. parameter K; is uniquely determined
by the configuration of field in the clearance and does not depend on
the length of the period of the accelerating structure, since

integral (2.367) actually is taken on the section, occupied with

field. During the calculation or in measurement Ke it is convenient
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to use the relationships/ratios

1 ! 0E
K’z - Eg \ ox
L

P B
dz = E,I\‘ 3 dz.

Thus,

By = L2 K,T,.

Hence we obtain the ratio of coefficients, entering expression
(2.364):

Ky
'.;.'id

B Ts
o< T

Equality (2.364) can be written in the form
. 1N - KgTg~?
cos;x=1—-nsm¢<l —Fnsmtp/.—?n’ ‘\m) cos? .

Parameter 1 is low in comparison with unity. As are shown detailed

calculations, if are satisfied the conditions
1 g/ KeTgN2 0 01,
TV Taar ) < F mw<L

then in the term, determining defocusing, it is possible to disregard

the component/term/addend, proportional " Then

2

cosp=1—nm sinq;——.i,— "\ Snar cos? @. (2.368)

Page 173.

Let us require the retention/preservations/maintaining the
stability of all trajectories in any phases of particles in the

limits of separatrix. For this must be fulfilled the inequalities
. 1 /Kng 2 39
l_nsmu”—?“z\b}ﬁ - oS3 2¢, << 1t
R, T T
l+nsm¢r—%n’KE&;/‘m§¢d>—l.

Prom the first inequality follows

R20, 1 KeTgn? 2.369)

cos2p, =3 M T ) - <
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From the second inequality we have
\%’2<2lﬂ# , (2.370)

Condition (2.369) determines the maximum permissible
value/significance of synchronous phase %+ with given ones n z K.
or the minimally allowed value of coefficient of asymmetry of field

K. with given ones ®»™ % Condition (2.370) is given upper boundary
for the coefficient of asymmetry A% Basic practical
value/significance has condition (2.369), since to obtain high values

K: is difficult, and to have the low absolute values of synchronous

phase is disadvantageous due to the decrease of capture region.

Work [37] gives the results of modeling of clearance with the
rectangular aperture openings/apertures on the electrolytic bath in 7
the approximation/approach of two-dimensional problem. According to
the measurements of field distribution were calculated the
coefficients of asymmetry K. Some results of measurements are given
in Fig. 2.29. Here a - narrow side of rectangular aperture; b - wide

side. As can be seen from graphs/curves, K;<lI.
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7, -

e m e e -
| | /
{ .
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Fig. 2.29.
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Particle focusing by the high-frequency quadrupoles possesses
advantages, which consist in large structural/design simplicity of
drift tubes, possibility of decreasing the diameters of tubes (since
within the tubes it is ndt necessary to place magnetic lenses), in
the absence of the complicated and bulky equipment of the supply of
lenses. However, in the short-wave proton accelerators (A=1.5-2 m)
focusing with the aid of the rectangular aperture openings/apertures
leads to the inadmissible decrease of capture region. Thus, let us
assume, K, =1; 2#=1. Then with A=2 m; a=0.25; k=1; B=0.04 and E,=16
kV/cm we obtain 1 =0,53 and condition (2.369) will lead to the
inequality

'—c%!.—’<o,n.

or 9. <3’ This value is so low which is necessary to consider the
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effect of a change in gap velocity. Taking into account the effect of
an increase in velocity '¢, it will increase
approximately/exemplarily doubly. From an increase in the energy of
particles parameter n falls, which decreases upper threshold «..
Hence it is apparent that in short-wave proton accelerator the effect

of high-frequency focusing virtually is absent. Expansion of capture
region with the particle focusing with the aid of the alternately
oriented rectangular apertures can be achieved/reached by an increase

in parameter n or decrease of the coefficient of clearance a. Since
2nk%T  eEgh
c2 ”Ioﬁ ‘

then increase of ‘" is possible with: a reduction in the exit energy
of particles; an increase in the wavelength of accelerating field; an
increase in the energy gain per unit of the length of accelerator;
the acceleration of polyvalent ions with the increased ratio e/m,.
Let us note that with the very low energies of parﬁicles and upon the
high specific acceleration exactly becomes difficult the focusing by

magnetic quadrupoles. If middle field and gap lengths are

fixed/recorded, thenE,::l;%=¢A{ Therefore an increase in the
wavelength makes it possible to substantially expand capture region
with an insignificant increase in the field in the clearances.
Focusing with the aid of the rectangular apertures proves to be most

effective in the long-wave accelerator of polyvalent ions.

The coefficient of asymmetry K, can be more than unity in the
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accelerating gaps with advanced electrodes (see Fig. 2.28c). V. A,
Teplyakov obtained disregarding small clearances between electrodes
advanced into the accelerating gap the following formula for the

coefficient of the asymmetry

‘ om0\
313 lo{ 27 gy

- (ltg-’tﬂ——;——To—’—-.
: s 20 -
b\

Kg=

where r, - radius of drift tube (distance from the axis to the

electrode).

Page 175.

At the low values of the argument of the modified Bessel functions

At Trg N2

lqzl; lgz 3 '\—B—}\:,
Hence
— ) 2
K,=§—}ﬁ£utgnu E—)‘; .

~ o S

The focusing action of such clearances with a=const) and with the

decrease of the diameter of drift tubes (which in turn, is connected

with an increase in the gradient of the focusing components of
field). Clearances with the advanced electrodes can solve the problem
of particle focusing of high-energy during the guarantee of necessary

dielectric strength.

From that presented it is evident that the beam focusing in the

linear accelerators with the aid of the high-frequency quadrupoles in
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a number of cases is promising. This method of focusing requires
further investigations and searches for the most optimum

configurations of the accelerating structure.
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Chapter 3.

Transverse vibrations of particles in the beams with the high density

of space charge.

§ 3.1. Formulation of the problem. Separation of variables in the

equations of motion.

In the first chapters was examined the particle motion in the
assigned applied fields (accelerating and focusing) without taking
into account electrical interaction of particles. It was assumed that
each particle moves in the manner that as if other charged/loaded
particles in the channel there does not exist. This assumption is
admissible, if the density of space charge in any beam section is
sufficiently small. However, the estimation of the possibility to
disregard/neglect the effect of Coulomb interaction of particles can
be given only within the framework of the more general theory, in

which'this effect is considered.

QSingle-particle" theory made it possible to determine the

parameters of accelerator, in which is provided necessary stability
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of motion of particles. But even when current density in the
accelerated beam is negligible, single-particle theory cannot answer
many questions, which appear during the design of accelerators.
Taking into account the phase volume of leam as the measure of the
scatter of particles for position and velocities, we is exceeded the
limits of single-particle theory. Introduction to the calculations of
the value of the phase volume of beam made it possible to calculate
the envelope of the trajectories of the collective of particles,
i.e., to determine the sizes/dimensions of beam in the focusing
channel and to answer a question about that, will pass this beam
through the focusing channel without the essential loss of intensity.
Was determined the optimum configuration of beam at the entrance of
channel, i.e., were found the matching conditions of beam with the
channel. It turned out that one of the most important charactefistics

of the focusing channel is its capacity.

Were explained the supplementary requirements for the sources of
particles, connected with the fact that the phase volume of beam must
not exceed the capacity of the focusing channel; an increase in the
intensity of beam must be accompanied by an increase in the phase

particle density.

Page 177.
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However, for solving the questions about the limiting current of
the beam of the accelerated particles, about the identification of
the parameters of the accelerator, designed for the acceleration of
beam with the assigned intensity, about the agreement of intense beam
with the channel and others of the theory presented it is
insufficient. Are necessary the relationships/ratios, which consider
interaction of the charged/loaded particles in the beam. Thus,
further fundamental withdrawal/departure from the single-particle
theory is connected taking into account the forces of interaction
between the particles of beam, i.e., taking into aécount the electric

fields of all charged/loaded particles.

The direct method of calculation of particle motion taking into
account their electrical interaction consists in comprising as many
equations, as particles in the beam, after introducing into the
examination all two-body forces, and to solve equations together,
after assigning the totality of initial conditions for the particles
of the beam. It is obvious that the solution of this direct problem
is virtually unrealizable, since a number of particles in the beam is
too great. Therefore it is necessary to deal concerning the model of
bundle, limiting a number of particles with the reasonable value in
accordance with the storage capacity of electronic computer. This
posing of the question proves to be already approximate. But also in

this case the substantiation of sufficiently general/common/total
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conclusions/outputs requires obtainings of many particular solutions
that it entails the expenditure of too long machine a time. Hence it

is apparent that the possibilities of direct method are very limited.

Another method lies in the fact that the superposition of the
fields of a large number of discrete/digital particles to replace
with the field of the continuous space charge. Then is examined the
motion of one particle in the assigned applied fields and in the
field of the space charge of beam. After considering the distribution
of initial conditions, i.e., the phase volume of beam, it is possible
to find envelope of particles and to answer other interesting us

questions by the methods, analogous to those described. However, this

method requires correct approach. It is not possible to compose

equation of motion, on the basis of which predetermined density

distribution of charge, since the obtained solutions can prove to be
by such, with which the assigned charge distribution (taking into
account which it was determined solﬁ;ion) is not retained. Such
solutions are internally contradictory and in the general case can
lead to the quantitative and qualitative errors. Therefore charge
distribution must be defined from the simultaneous equations of

motion and field just as particle trajectory. Obtained from the

totality of the equations of mechanics and electrodynamics the proper
field of beam is called self-consistent. Self-congruent field causes

this particle motion, what determines precisely this field
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distribution.

Are possible two formulations of the problem. If is assigned
initial charge distribution, then problem consists in determining of
particle trajectories and change of the charge distribution in the
time, which corresponds to the obtained totality of trajectories

(unsteady problem).
Page 178.

In the second setting initial charge distribution is not assigned;
problem consists in the determination of stationary charge
distribution (not depending clearly on the time) and in the
calculation of particle trajectories, at which is supported this
statiénary distribution (steady-state problem). Although the
nonsteady-state problem is more interesting, its solution for the
cases given below is not yet found. Therefore subsequently let us

examine only stationary problems.

The radio engineering requirements, presented to the vacuum in
the linear accelerator, are such, that the mean free path of
particles exceeds the length of accelerator or compared with it.

Therefore let us disregard/neglect particle scattering on the

residual gas.
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The general/common/total formulation of the problem of
determining the self-congruent field disregarding by the effect of
the collision of particles and by the effect of radiation/emission
consists of the following. nix, y. z. P«. P,. P.. n — function of the
distribution of density of particles in the six-dimensional phase
space canonically conjugated/combined the variable/alternating r, P.
In order to find a number of particles per unit of volume of the
usual three-dimensional space x, y, z, let us integrate the function
of the distribution of phase density according to all possible
particle momenta at the given values of coordinates. Hence the
density of space charge is equal to

3

o(x.y,2.0y=e \ n(r.P. t)dP. (3.1

where
dP =dP.dP,dP;.

Current density is determined by the integral

2

d(x,y 2,t)=e 5 v(ir, P, t)n(r, P, t)dP. (3.2)
During the calculations of current density (3.2) let us
disregard/neglect the transverse components of current and the
scatter of particle speed, connected with the longitudinal

vibrations. Then

S(x, 4,2, t) =v,Q(% y. 2, 1).

Phase density in the space of the canonically conjugated/combined
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variable/alternating satisfies Liouville theorem dn/dt=0, or

an on  dx _;_.‘ZE..QEE._
9r T dx ot T ok, g

Lo=1.
Connecting to this equation the canonical equations of motion and
equation for the scalar and vector potentials of field, we obtain the
complete system of equations of self-congruent field [79]. Equations
of motion can be written in the form

v =dradpf, ‘f-:;= —grad H.
Page 179.

Index P with the gradient means that differentiation is conducted
according to the components of generalized momentum; H - Hamiltonian
of the particle

H=¢-cl.
Hamiltonian does not contain the explicitly vector potential of

field, but, as it is possible to show [21],

gradH=egradU—-e[v~r0tA[—ed£— .

where U, A - sums of the corresponding potentials of applied fields
and proper field of beam. This expression directly follows from
formulas (2.1), (2.5). The system of equations of self-congruent

field takes the form
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dn
5 +vgradn—grad H gradpn =

v =vrad,H: A
P
<o = —grad H;
Jdl -
H=mc—el:
AU = —: \ nd?P:

A= —ue \ vndf.
We will consider that the particles move in the medium, which does
not contain dielectrics,

jo7 (l\

€= gaE D Mi W= AT 107 oo, (3.4

Key: (1). H/m.

System of equations (3.3) has countless solution set. Let us
assume that are known the expressions for any first integrals of

equations of motion

Iy (x.y, 2, Py, P,. P.. 1) =const:
la(x, y. 2. Py P,. P, 1) = const.

Then arbitrary function from these constants of motion will give
solution for the function of the distribution of the phase density
n(x Y2, Pey Py Pry t) =f (Is Ly ...0), . (3.3)
and, electromagnetic fields obtained, on the basis of this function

of distribution of phase density will be self-consistent.

Page 180.
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Actually/really, first equation (3.3) is satisfied with the arbitrary

function £
dr of dl, _ Of dly

&A1, ar T dly
since, regarding constant of motion, dI/dt=0. Latter/last three
equations (3.3) are satisfied inasmuch as along the condition
constants of motion are obtained in the field of forces, assigned by

these equations.

Expressions for constants of motion contain the unknown thus far
potentials of electromagnetic field. Let us examine a special case,
namely let us assume that the Hamiltonian

H=8-+-eWU=+Uy
is constant of motion; here U - potential of the proper field of
beam; U, - assignéd potential of applied field. If external field in
the course of time does not change, then it is possible to assume
that and the potential of the proper field of beam also clearly on
time does not depend and, consequently, also Hamiltonian as a whole
does not depend clearly on time. According to expression (3.5), it
can assume

n=[(H),

where f - arbitrarily assigned function of the distribution of phase
density. Then equation for the scalar potential is reduced to the

following:

A=—F 5 f (8 +eU +eU,) dP,
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but for the vector potential, according to expression (2.42), we will

obtain
v

A=f\,.

2
From the latter/last two equations are determined the potentials of

self-congruent field with any assigned distribution function.

The equations of motion of particles in the strong-focusing
linear accelerator taking into account the field of the space charge
of beam are obtained in chapter 2 and take form (2.50). On the
assuﬁption that the amplitude of the longitudinal component of'
accelerating field does not depend on transverse coordinates and that
the proper field of beam is absent, transverse and longitudinal
coordinates were divided. However, when the proper field of beam is
present, the problem in principle becomes complicated and in the
general case is reduced to the determination of the function of the
distribution of phase density in the six-dimensional phase space.
However, preliminary estimations show that also taking into account
space charge the broblem can be simplified. In the process of phase
stability the beam decomposes into the clusters. The aperture of
channel and, therefore, the transverse sizes/dimensions of clusters

is substantially less than gA.

Page 181.
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Since the strong focusing virtually does not limit the selection of
synchronous phase, the latter is selected so as to ensure the
sufficiently wide capture region of particles on the phases. In this
case the longitudinal length of each cluster is from 1/4 to 1.3 gX\.
Thus, the longitudinal sizes/dimensions of clusters exceed transverse
ones. In the clusters, elongated along the longitudinal axis, the
transverse components of the proper field of beam weakly depend on
the length of cluster. Let us show this based on the example of the
evenly charged/loaded general ellipsoid. The approximation of
clusters by the evenly charged/loaded ellipsoid was previ usly used
in works [116.3] for the evaluation of the effect of the pushing
apart Coulomb forces in the beam. e ry, { — semi-axis of ellipsoid,
moreover the longitudinal semi-axis : is more than transverse
semi-axes ’~ s+ The potential of field within evenly charged/loaded

general ellipsoid [80] is equal to

[ = ——Q" ﬂ - : —A' Pty - *-‘ Z': N
Um =g [ G+ =Nt (1= M) 1

2

where

«
! ds
M=1=154 : i -
2 § ry—-s)te (r;+s)’ tyr—g™2

o

] 2 ds
Fetyltx—ry) \ % |
N="2 R R R R

Fig. 31 shows the dependence of coefficients M, N on relation r:!.
From the graphs/curves it is evident that coefficient M weakly
depends on relation r,/ and it is close to unity up to comparatively

large values r./l. Coefficient N depends on relation .l is even less
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susceptibly/critically. Up to !=2r: with the accuracy better than

50/0 coefficient N remain equal to value

. | fx—7y
A\=?

rx="ry :

Therefore, examining transverse vibrations, we can assume /= ®.j.e.,
disregard the decomposition/decay of beam on the clusters. This gives
the overestimation of Coulomb forces to 10-150/0. Apparently, in
actuality error is still less, since was not considered the effect of
the metallic walls of channel; furthermore, Coulomb pushing apart
greatest_with the low energies and should be considered also the
effect of the particles, which proved to be out of the separatrix. If
we consider clusters infinitely long, then thereby we is disregarded
by the longitudinal vibrations of particles and at our disposal
remain only the equations of transverse vibrations. The task of
determining the self-congruent field is reduced to the
four-dimensional. In this examination all particles are assumed to be
synchronous ones and it is not possible to determine the form of
cluster from the complete six-dimensional task taking into account
the dependence of the defocusing action of high-frequency field on

the phase of particle.
Page 182.

Let us note that the difference 1-M susceptibly/critically

depends on the relationship/ratio of the transverse and longitudinal
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sizes/dimensions of cluster. During the evaluation of the effect of
longitudinal Coulomb pushing apart on the process of phase stability
it is important to consider both the length of cluster and its
transverse sizes/dimensions, since the longitudinal component of the
natural field of beam depends substantially on these
sizes/dimensions. Therefore first let us examine space-charge effect
on the beam focusing let us determine the transverse sizes/dimensions
of beam disregarding by the decomposition/decay of beam to the
clusters. In ﬁhapter 4 we examine space-charge effect on the phase

stability, being assigned by the transverse sizes/dimensions of beam.

Latter/last task can be brought to the two-dimensional, if we
assume that the longitudinal component of Coulomb field of the bundle
does not depend on transverse coordinates. In the case of ellipsoid
this by itself the cylinder of finite length, the assumption
indicated is fulfilled only approximately; however, with the
satisfactory accuracy. A relative difference in the longitudinal
components of field on the axis and on the periphery of the evenly
charged/loaded cylinder of finite length, elongated along the
longitudinal axis, does not exceed 40o/0 on the edge of cylinder and
rapidly it decreases with the departure/attendance from the edge.
Dependence on a radius of the longitudinal component of the proper

field of the evenly charged/loaded circular cylinder with

length-diameter ratio, equal to three, it is shown in Fig. 4.2.
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Page 183.

S 3.2. Equations of transverse vibrations in the strong-focusing

channel during the "microcanonical” distribution of phase density.

With the linear approximation of the focusing fields of the

equation of transverse vibrations (2.50) they take the form

d3x - — ev.
dr?

oE -

G(z)x ,m'w, 5 (@ x—
e OF
2mgy® dzz(z' Hy— mv‘ dv(x Y 2)-

0 (x, u. 2):

" YJ (3.6)
_!=“ﬁ!
,%YG(ny

drs
According to the simplifying assumptions accepted, the longitudinal
coordinates z of particles are connected with the current time t with

relationship/ratio

z2(t)= v, () dt.

€ G 3™
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general/common/total for all particles so that any of these

variable/alternating can be selected as the independent variable.

Equations (3.6) can be obtained from the canonical ones, if to
the latter corresponds the Hamiltonian

prrPy . . xB—y? ¢ OE, it LN T
H=%E$faﬁv) 5 +Ef14n 3 +Pbu¢wy

In the linear approximation/approach to focusing fields 1.~ 4, =0
and transverse particle momenta are canonically conjugated/combined
with the transverse Cartesian coordinates. As can easily be seen,
Hamiltonian depends on time, so the gradient of focusing field -
function of longitudinal coordinate. Therefore in the strong-focusing
channel Hamiltonian is not constant of motion. Let us note that in
this case the dependence of gradient %} on the independent variable
is not so essential: because of the smallness of the factor of
defocusing the gradient of accelerating field always can be with a
sufficient accuracy replaced with the value, averaged on the period
of the accelerating structure and, therefore, which does not depend
on longitudinal coordinate. The fact that in the strong-focusing
channel the Hamiltonian is not constant of motion, complicates task.

To compose the first integral of equations of motion (3.6), which

occurs with any distribution functions, is impossible. This
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difficulty can be overcome, after averaging equations (3.6) for the
period of focusing field. The Hamiltonian of the averaged equations
would not depend on time. However, "smooth" approximation/approach
gives satisfactory accuracy only at the relatively small frequencies
of transverse vibrations and does not befit, for example, during
calculations of the matching networks. Therefore let us first solve
task in the general view, without resorting to the averaging of the

equations of motion.

For one important particular case of the distribution function

it was possible to indicate the integrals of motion of unaveraged

equation [81].

| — — Let us pass for the convenience in equations (3.6) to

the independent variable 7 (2.52):
2, 2 U o
TGO it g =0

2 St U
@+ QY+ gy =0

(3.7)

Let us assume that there is such-stationary distribution of phase
density during which the components of the proper field of beam
linearly depend on the corresponding transverse coordinates. In this
case equations (3.7) will prove to be linear, with the divided
variable/alternating it is possible to write the fundamental pairs of
solutions in general form, without knowing the

concrete/specific/actual dependence of the potential of proper field

on the coordinates
2 19, (%),

Yz (T)mog(T)E
Ly () moy(t)e

(3.8)

% 19, (%)
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In accordance with the condition for standardization (2.65)

%=_l_- dﬂ ! . (3.9)

Real solutions will take the form
X (1) = A0 (T) COS [P (T) + BOzis
y (t) = A,0, (t) cos [, () +O,].
‘Values 4d:, '4;, B;, 9, depend on the initial values of

(3.10)

variable/alternating x.y.j:,g% and they remain constants in the
process of motion, i.e., are constants of motion. According to
expression (3.5), phase density is an arbitrary function of constants
of motion. Let us assume that the phase density does not depend on
the phases of transverse vibrations 8, &, ' H
n={(Azn A,).
This means that at any point of channel and with any available
amplitude of oscillations there are particles with all possible
phases of transverse oscillations. Eliminating phases from solutions

(3.10), we obtain expressions for two constants of motion

A (o= ) + ()"

A;-(Vdf dolly\’ (o,,)

@3.11)

Page 185.

It is assumed that o, 0,— assigned functions of the independent

variable. Let us introduce new constant of motion

F=A}+ AL (3.12)
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Since values A, A, characterize the intensity of transverse
oscillations in two mutually perpendicular planes, constant of motion
F in a sense is equivalent to the integral of energy. Let us show A
that there is such dependence n=f(F), with which the equations of
motion (3.7) actually/really prove to be linear and with the divided
variable/alternating. This takes place when for all particles in the
beam constant of motion F has one and the same value/significance of
F=F,. The dependence of phase density on constant of motion can be
written in the form:

n=n,d (F—F,), (3.13)

where §(x) - Dirac's delta function

8(x)=0 r(f;')} x = 0; )) §(x)dx=1. H

-

Key: (1). with, 1

During this selection of the distribution function the representative

points of all particles at the four-dimensional phase space X, U Xy

A lie/rest on the three-dimensional surface of the hyper-ellipsoid

’

.o .o s _

(oxx—osx)’+(oyy—o,y)’+(é)'+(%) =F. (.14
Let us design hyper-ellipsoid (3.14) on plane % x. . Utilizing
equations (2.310), we obtain

(08 —Tcx)? + (é)': F,. (3.15)
Analogous equation is correct for the projection of hyper-ellipsoid
on plane ;é.é. According to expressions (3.12), (3.13),

AL+ AL =F,.
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On ellipse (3.15) lie/rest the representative points of the
particles, which move at plane X0Z; for such particles y=§=0 and

A, =0. For remaining particles Ai< F, and their representative points
fall inside ellipse (3.15). The representative points of all
particles, which move in plane YOZ, are projected/designed into the
origin of the coordinates of plane x, x since for these points

A, = 0. Thus, if in the four-dimensional phase space the
rebresentativé points lie/rest.on the surface of hyper-ellipsoid,
then in each two-dimensional phase space the representative points

fill the volumes, included by ellipses, type (3.15).
Page 186.

Area within ellipse (3.15), according to expressions (2.110),
(2.114), is equal to 7F,. Consequently, F, - value of the given phase
volume of beam for each of the phase planes x, x and Y. §. Since the
variable/alternating in the equations of motion are divided,'phase

volumes must remain invariant on each plane * Pr and % A

From equation (3.14) it follows that for any particle

RGNS

Out of the ellipse

(3.16)

EI S
CRET A N 7
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there are no particles. Particles with the masimum amplitudes in each

transverse plane reach ellipse (3516) at the moment/torque when
Opx—0.x=0; a,'y—c';,y =0.

Ellipse (3.16) covers beam section by plane XOY. The semi-axes of

section are equal to

re(v) =} F,0.(1);

0=V Fooo o
In this case it is assumed that functions o0:(1),0,(r) are selected so
that on each phase plane ellipse (3.15) would coincide with the
boundary of phase volume. Initial conditions for functions 0. ¢, are
assigned by formulas (2.119). Are obtained the same
relationships/ratios, that also in the single-particle theory, but

the moduli/modules are fundamental of solutions % o, thus far they

are not determined.

Let us note that constant of motion F, determined by expression

(3.12), led to the equality of areas on planes x, x and y, §. The

case wvhen two-dimensional phase volumes are distinguished, can be
considered, after introducing the factor, different from unity, with
the afore-mentioned from the squares in sum (3.12). For

simplification in the task let us assume that the beam at the

entrance of channel possesses axial symmetry, so that its
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two-dimensional phase volumes are identical with respect to value.

The distribution of phase density (3.13) is analogous with the
microcanonical distribution of the states of the isolated/insulated
system according to energies [82]). Therefore distribution (3.13) let

us name/call microcanonical.

According to expressions (3.1), (3.13), the density of space

charge in each beam section is distributed according to the law

400 4+
e(x, y, 2) =en, S S S(F—Fy)dxdy.

-0

Page 187.

Let us replace in the dual integral the variable/alternating
integrations X, y by the new variable/alternating a, Q:

gk — 05X = acosQ;

o,_t}—&,y =asinQ.
This replacement is eqﬁivalent to transition on plane ¢, g,y from the
Cartesian coordinates to the polar ones with the displacement of the
origin of coordinates into point ., o, Punction F(x, y, X, f, r) is
determined by expressions (3.12), (3.11) and in the new
variable/alternating takes the form

Feats ()4 ()"

and the jacobian of conversion is equal to [83])
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lox  ox
3 o a
Loy aw  Sx(Moy(m
[9a 9g
Hence
.. .
dxdy'—‘mdﬂ.dg,
so that
en, 2 T x3 y?
— 0 Qe e = L
Q(x, 4 T)—ﬂzay ‘é aQ é 6( o'+ 3 T F, . ada.
| Let us introduce one additional replacement of variable/alternating
| a?=u and will designate

wp=F—{= "= (L.

\a/ ay.

Then

M ¢

e(x, ¥ )= o::: S 8 (4 —uy) du.
1]

I1f point x, y is located ouﬁ of ellipse (3.16), then u,<0 and p(x, Yy,
r)=0. If point x, y lies/rests within ellipse (3.16), then u,>0 we
obtain

R (%, 4y V) = o
Thus, in each beam section the density of space charge does not
depend on transverse coordinates. The microcanonical distribution of

phase density leads to the uniform distribution of the charge density

according to the beam section.

Let us assume I - maximum instantaneous current strength in each
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cluster of the accelerated beam.

Page 188.

This value let us name/call peak beam current. Since we
disregafded/neglected the decomposition/decay of beam to the

clusters, then one should consider that we deal concerning the steady

beam, in each section of which the current retains one and the same

value/significance
I(z,t)=1v, S S e(x, y, 2, tYdx dy = const,
equal to peak beam current. Then
- Q9 =gy
since each beam section - this is ellipse with the uniform
distribution of charge. Taking into account.expression (3.17)
M= cgpocry
Let us assume that a substantial change in the semi-axes of
section occurs at the distances, which considerably exceed the values
of semi-axes. This assumption is fulfilled well, since the transverse
sizes/dimensions of beam usually are considerably lower than the
period of focusing field. Coulomb field of particles rapidly
decreases with the distance and for each given one r the beam can be
approximated by infinite elliptical cylinder with semi-axes
r (%), 7, (). The scalar potential of the proper field of beam satisfies
in this case the equation

%}f’.—+%=—%o(t). (3.18)




r._-.m-.. .
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where
Q
I/nv,rery np}l f,i+i'7'<l
x v
e(r)= © L
0 npH -’?+%>l

Key: (1). with.

Let us determine the potential of the evenly charged/loaded
elliptical cylinder. The potential of field within the cylinder
corresponds to the equation

AU = — e
and out of the cylinder

AU, =0.
Function U is continuous on the surface of cylinder together with its
first-order derivatives, and at infinity external potential behaves
as the potential of charged/loaded straight line: U,~Inr, where r -
Ege radius-vector of point in plane XOY. Let us switch over in plane
XOY to elliptical coordinates [84]
x=fchicosn; ymsfshisinn. (3.19)

Page 189.

The lines of the equal values of coordinates ¢t are the ellipses

R
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where a, b - current semi-axes of the coordinate ellipse

value f - half of focal distance, identical for all coordinate
ellipses
fr=a*=b2,
Let us select parameter f in such a way that at certain
value/significance f(=f, beam section would coincide with the
coordinate curve
re=fchg; ry=Fshg,.

Hence
rx—7",

L =g~ (3.20)

ry=+ry

The lines of equal values 71— this family of the hyperbolas

x2 ul
—_——— e == |‘

at o bE
where
g, =fcosn; b,=fsinnm,

moreover, the foci of coordinate hyperbolas and ellipses coincide.

The Laplacian of two-dimensional task in curvilinear coordinates
takes form [84]
L rd h,au
W [z(F ) +aliE)]

wvhere h,, h, - Lame's coefficients, equal to

7 0x \? 9 \2
eV G+ %, (%"

7 Ox2 a
hz= I/l\;‘- -'-\5“!

According to equalities (3.19), in elliptical curvilinear coordinates
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the Laplacian is led to the expression

AU = 1 [ o )

f2 (ch3t—costn) \ “oEr + m?
Hence we obtain equations for the potentials of internal and applied

fields in the elliptical coordinates

GE’ + a“’ iqf’ (ch?§—cos® 1),
®*U,

a§2+0“2-0

Page 190.

Particular solution of the nonhomogeneous equation

U@ m) = — g of* (ch 28 +cos 2n).
General solution of the homogeneous equations consists of the sum of
the terms

chnk cosnn; chatsinnan;
sh nk cos ny; shnd sinnn,

where n in view of the periodic dependence of potential on coordinate
n— integers. from the considerations of symmetry the general
solution must satisfy the conditions
Us B = Uy Gr — ) =U, G, x—).
Therefore the terms, which contain sinay, drop out, moreover in the

sum remain only the even harmonics

UpG )= (@omch2mE + bym sh§) cos 2mm.

Internal potential Ui(x,y) must not have gaps in the foci of
coordinate bllipses £=0; n=0, n. Hence it follows that for internal

potential bom=0. Actually/really, let us examine one of the
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derivatives of the general solution
Wy

From the transfer equations (3.19) we have

095  shEcosy . 9n _ _ chtsinng
dx ~ f(chf—cosin) ' odxr ~ f(ch¥f—cosin) *
At the points of focus derivatives g%. %2 go to infinity. Derivative
%‘é’- remains final. if in foci %=%—'fl"=o, which occurs when btm=0.
k]

Thus, internal potential is determined by the expression

Ui, n)=— ;—oqi’ (ch 28 +cos2n) + Y} azmch2mE cos2mn.

mw=d

With t— o coordinate ellipses asymptotically approach the
circles/circumferences, so that at infinity ¢ - the logarithmic

function of a radius - vector in plane XOY:

a+b 2r
§=ln T ——>ln—,—.

Page 191.

Hence it is apparent that the external potential satisfies boundary
condition at infinity, if it consists of that damping withi{— = the
function and of the term, proportional (. Assuming/setting

bom= —am for the external potential, we will obtain:
Ue(B m)=bet +~ 2 byme—2™ cos 2mn.
ma=i

Further, from the boundary conditions on the surface of the
elliptical cylinder

UrBor ) =Ua o 15 gt Gar )= T8 o
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it follows

= 1 ofte-2t:
a2 = g of2e—%%;

am.—_O ﬁb)l m>l.
Key: (1). with.

Internal potential in the elliptical coordinates

Ui g, )= — B_leo @/3 (ch 2§ + cos 2n—e—2% ch 2§ cos 2n) — const.

Let us return to the Cartesian coordinates. According to expressions

(3.19),

x# - y? = L 2 (ch 2 — cos 2);

x’—y-=%f’(l —ch 28 cos2n).
Substituting latter/last equalities into the expression for the
internal potential and taking into account equation (3.20), finally

we obtain -
Ur 4 == [ #+y* =2 (22— y?) | const. (3:21)

~ry

Prom the expression for the potential of evenly charged/loaded
elliptical cylinder (3.21) it is evident that the components of the
proper field of beam %gn %%-; the linear functions of the
corresponding transverse co;}dinates. By this is justified assumption
about the linearity of equations of motion (3.7) and about the form
of first integral (3.11), (3.12). Thus, during the stationary
microcanonical distribution of phase density potential (3.21)

describes self-congruent field.
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Potential (3.21) consists of two components/terms/addends. First
term corresponds to the field of beam with the axial symmetry, this
field leads to the expansion of beam. Second term - to field with the
quadrupole symmetry. The sign of second term always coincides with
the sign of the potential of external quadrupole field, since in
focusing on x lenses r,>r,. Second component of Coulomb potential

does not shield, but amplifies external quadrupole field.
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Page 192.

During the conclusion/output of expression (3.21) it is assumed
that the potential of the proper field of beam is completely
determined by the charge of the accelerated particles; in other
words, we is disregarded by the compensation for space charge by the
secondary electrons, which are drawn in inside the positively
charged/loaded beam. This is justified by the fact that in the ionic
linear accelerators the slow secondary electrons are not seized into
acceleration mode. In the strong-focusing channel the electron motion
proves to be unstable, since due to the relatively small momentum .of
an electron fall in the unstable region it salted orders. In the
channel appear the forces, which provoke the departure/attendance of
electrons from potential well. Furthermore, in the proton
accelerator-injectors the time of the establishment of ;Bmpensated
space charge [85] even without taking into account applied fields

usually considerably exceeds the duration of pulse beam.

The redistribution of potential in the region, occupied with the
space charge of beam, as is known, it limits the longitudinal

velocity of particles with the assigned potential on the surface of
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beam [64]. This limits a maximally possible beam current. Limitation
is determined by known law "three seconds". However, it has a
value/significance only for the beam of particles low energies. For
accelerated beams it is possible to disregard the effect of the
redistribution of potential on the longitudinal velocity of
particles. From expression (3.21) it is evident that the surface of
the beam of elliptical cross section is not equipotential. Let us
examine for simplicity the beam of round cross section r.=r, =,

Then

Let on the surface of beam U=0. On the axis of bundle we have

[

Au=m.
Since -eU=mv?/2, a relative change in the longitudinal velocity in
the nonrelativistic approximation/approach will comprise

Av/v=1/2-4U/U, or
Ao - e I

— D — ——— y ——

0 4neom  oF
Let us produce numerical estimation, after accepting I=0.5 a; p=0.02.

In this case of Av/v<0.20/0, which is negligibly small.

Purther, during the conclusion/output of expression (3.21) they
disregarded/neglected the effect of the metallic walls of channel on
the potential distribution of proper field within the bundle. If
bundle moves along the axis of continuous metal tube of round cross

section, then when r.»r, in potential (3.21) decreases the quadrupole
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component of field and appear nonlinear terms relative to x?, y?.
Page 193,

As are shown the appropriate evaluations, the effect of metallic
walls sufficiently little, if a radius of aperture opening/aperture
somewhat exceeds the sizes/dimensions of the semi-axes of beam
section. Thus, with r,=7 mm, -, =3 mm and a radius of channel 10 mm
correction ﬁo linear coﬁponent of the strength of field is less than
50/0, but nonlinear component does not exceed 20/0. The nearer the
beam section to the circular, the less the correction. It is obvious
that the circular metal tube does not affect potential distribution
within the circular bundle whose axis coincides with the axis of

duct.

Let us return to the equations of motion (3.7). After
substituting in these equations derivatives of potential (3.21), we

will obtain

dix | elS2 2x
T Q:(t) x— 2mecIBiyiey re(re+ry) =0
ﬁ!( - _ ¢/ St 2y
des Qy (T) y 2:""“03%330 : fy (’:1" ry) = 0
The combination of the constants
o =4m°,,_.:_¢_3 (3.22)

has a dimensionality of current. For protons I,=3.14:10’a. For the
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decrease of recordings let us introduce into the equations the

parameter, which has tne dimensionality of length,

2/ .
fa=s l/m . (-5-);5)

Then equations of motion taking into account the proper field of

bundle are reduced to the form

]
kK

d*x ‘

dz? + LQ:(t)— relfx=—1ry)
2
a

ryrzt+ry)

Ay (3.24)
31—,-1~LQy(T)—
If beam current is negligible, then it is possible to assume -, -y
and equations (3.24) are reduced to the equations of Mathieu-Hill
type with assigned periodic coefficients Q. Q, i.e. to the equations
of single-particle theory. For these equations by known methods can
be calculated the functions of Floquet, the completely describing
fluctuations of particles in the matched and unmatched beams. But if
Coulomb terms are not small, then equations (3.24) directly are not
solved - they contain unknown thus far functions r. (1), r,(v). Basic task
consists of the calculation envelope of particlés ey Ty Equations for
envelope taking into account Coulomb terms will be derived below.
Under the specified initial conditions for equation for the envelopes

have the periodic solutions with the period of focusing field.

Page 194.
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In this case equations (3.24) for the individual trajectories and
when ,, =0 prove to be equations of Mathieu-Hill type, and the

functions

r
-, 1) = — R
YV Fo Qy( ) } Fo \5,20)

are the moduli/modules of the corresponding functions of Floquet.
Thus, for the matched beam it is possible to determine Floquet's
functions taking into account Coulomb pushing apart. Under the
mismatched initial conditions for enveloping equations individual
trajectories (3.24) do not have periodic coefficients and for them
not at all exists Floquet's functions. Therefore in contrast to the
single-particle theory when r,#(0 unmatched beams it is not possible
to describe with the aid of Floquet functions and for them it is
necessary each time to search for new solutions. Subsequently we will
obtain the estimations, which make it possible to establish/install,

in what cases it is possible to assume/set r, =0,
§ 3.3. Envelope of particles. Frequency of incoherent.
Equations for the envelopes can be comprised analogously with

equations (2.69). Let us substitute in the equations of motion (3.24)

complex solutions (3.8). Taking into account relationships/ratios

(3.9) and (3.17), we obtain
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dr, F 2r?
W'*Q‘(t)"—?—r,_w]:();
2 " (3.26)
d®r, F2 2r2
#*Qu(t)’y'—?‘_ —=0.

Initial conditions for the envelopes are determined by expressions

(2.121).

Envelope of particles in the strong-focusing channel satisfy
system of two nonlinear second order equations with the periodic
coefficients, moreover variable/alternating in the equations are not
divided. Equations (3.26) do not have the tabulated solutions and
must be solved numerically under the assigned initial conditions. In
the general case of solving the system of equations (3.26) they prove
to be noncyci.c that i£ corresponds to the envelopes of unmatched
beams. Periodic solutions for the envelopes, that correspond to
matched beam, determine from periodiéity condition (with the period
of functions Q.. Q). Usually by known methods calculate the
moduli/modules of Ploquet's functions when 7, =0, and then of the
special computational program they find periodic solutions for r.r,.
gradually increasing parameter -, to the given value., For the
numerical integration of equation (3.26) it is convenient to convert,
after passing directly to the moduli/modules of the

standardized/normalized complex solutions by formulas (3.17).

Page 195.
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Then in the equations remains, besides assigned functions Q,, Q. one

arbitrary parameter

d%0, 2ra |

S
20 L o
dt? Qx(T)Gx 0; F(} 0, ~ 0y (3 '-)
d%c, ’ ot i R
EZ—J'_—‘Q{/(T)U,J-— U,’, _TO a:-—_——‘”; ‘—0.
The periodic solutions of equations (3.27) e. (1. ¢, (1) — the

moduli/modules of Floquet functions of equations (3.24), that
correspond to the spgcific value/significance of parameter 2-i Ff,.. The
definitions, given above.for‘the instantaneous and medium frequencies
of transverse vibrations (2.10l1), (2.104), can be now generalized to
the case of matched beams with the large space charge. Phase change
of Floquet's function in the matched beam is as before determined by

formula (2.105)

‘d 1
—f 4 _ ¢ dr e
“_S o _.S - (3.28)

'] 0

To the numerical solution in the computers of equations (3.26)

or (3.27) one should resort when previously it cannot be assumed that
the hardnesses of quadrupole lenses are sufficiently small. But if

vhen ,, =0 phase change of transverse vibrations in the period of

focusing field is small, then equations for the envelopes can be

solved in the smooth approximation/approach. Let when - - 0 u=y,. Let

us assume u,<<27r. We will search for solutions for the envelopes in
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the form
re(t) =R (0)[1 -~ q: ()I; (3.29)
ry (1) =Ry, (V)1 — g, (1)].

Functions ¢:(v). ¢,(t) let us determine by equation (2.224) and
conditions (2.226), (2.227). As was shown in § 2.7, from the
condition u,<<27 follows ¢. <!l. g, 1. Values R,. R,— the
average/mean values of envelopes in each period of focusing field.
Since 4x 9, are small,

1 1
S N R,
rx—7ry ~ R:+Ry (Rx— Ry 9=— (Re—R 2 9y

After substituting solutions (3.29) in equations (3.26), we will be
restricted to linear approximation/approach on g¢. ¢,. Averaging
equations for the period of focusing field and taking into account

equality (2.229), we obtain

d*R, 3 F3 27 . .
— dtt +P.Rx_§,:—' Rx"R—y. =0 .
@R, ot (3.30)

B __ P _
—am tR— =gz, =0

Page 196. ﬁ

Regarding, functions ¢. ¢, from the beam current and on its phase
volume do not depend. Thus, in the smooth approximation/approach the
dependence of envelopes on the current and the phase volume is

completely determined by slow components R. R, Equations (3.30)




DOC = 82105210 PAGE 37/

contain only constant coefficients, which in principle facilitates

the calculations envelope of particles.

Let us examine first the focusing of matched beams in the smooth
approximation/approach. Equations (3.30) have particular solution

. d*R .
R:=const; R,=const. In this case 3(%—=—E,!’-=0. so that two coordinates
of the state of equilibrium R, R, are determined by the algebraic

equations

(3.31)

Since equations (3.31) are symmetrical relative to the
adjustment/exchange of indices, must exist solution R.=R,=R. System

of equations (3.31) is reduced to one biquadratic equation

rt F
R R- T 0,

whence

] / i+ Y i+ i

Envelope of particles, which correspond to this solution, are

periodical with the period Ar=l

re{t) =Re [l - q= (V]

ry (1) = Re (1 +4, (9. (3.29a)

The mean radius of matched beam R. depends on the full current of

beam, proportional, according to expression (3.23), parameter r}, and
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from the value of the projection of the phase volume of beam on each
of the phase planes, proportional F,. From expression (3.32) it
follows that with

ra € 2poF,, (3.33)

the mean radius of beam on current does not depend

RC=R2=‘/-E’.

where R!— the mean radius of matched beam with the negligible

intensity.

Page 197.
In other limiting case
ra > 2ueF,
the mean radius equals
Re="2
Bo
and does not depend on the phase volume of
beam. With satisfaction of condition (3.33) it is possible to use the
equations, which do not consider Coulomb interaction of particles. As

the criterion of space-charge effect on the transverse size/dimension

of matched beam is convenient value

=, (3,34
h 2M0Fo

wvhich let us name/call the Coulomb parameter of beam. Case (3.33) is
reduced then to condition h<<l, and second limiting case - to

condition h>>1. Expression for the mean radius of matched beam (3.32)
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can be simplified

Re=RL) Aoy 1~ (3.95)
Thus, in the smooth approximation/approach the expansion of beam in
the focusing channel is determined by the only parameter, which
represents the dimensionless combination of the basic parameters of
beam and channel. The Coulomb parameter of beam can be represented,
according to expressions (2.106), (2.113), (3.23), in the form

h:rﬁ%;-éf-ﬁl. (3.3,

Here I, - characteristic for each type of the accelerated particles
strength of current (3.22); Qﬁ—-the medium frequency of transverse
vibrations in the absence of space charge; I - complete peak beam
current; V,— the value of the projection of four-dimensional phase
volume on one of phase planes (2.2). The ratio of the full current of
beam in the peak to two-dimensional transverse phase volume |, let us

name/call the phase current density of beam. The Coulomb parameter of

beam is proportional to phase current density.

1
From an increase in the energy of particles the Coulomb J

parameter falls. Therefore the space charge of beam most of all

affects particle focusing in the initial part of the accelerator.

In the smooth approximation/approach to calculate the frequency

of single particles in the matched beam is simple. The modulus/module

of Floquet's function is determined by expressions (3.25), (3.29%a),
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Substituting Floquet's modulus/module into equality (2.101), we have

@ (t)=0(7) () T~ h*—h), (0.38)
wvhere o’— the instantaneous value/significance of the frequency of
transverse vibrations in the absence of space charge. It is averaged
frequency on the period of the focusing field

p=po(V T—n*—n). (3.39)

With an increase in the phase current density the frequency of
transverse vibrations decreases. Consequently, smooth
approximation/approach is improved for the beams with the large
intensity. If particle motion in the absence of space charge is
stable, then  cospsj<1! and u, is real. Then frequency u remains real
at any values of Coulomb parameter. Thus, beam does not lose lateral
stability with as the conveniently high currents. However, with the
time of ripening of phase current density increase dimensions of beam
in the assigned focusing fields; therefore to realize lateral
stability with h=»= in the principle is possible only with the

infinite aperture.

For evaluating the limits of the applicability of the smooth
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approximation/approach of equation (3.27) they integrated numerically
with the aid of electronic computer M-20. For each set of the
parameters u,, ;%, wvere determined the periodic solutions with the
period of the focusing field: ¢:=q:(1)io, =g, (r). Then they calculated the
medium frequency of transverse vibrations according to formula
(3.28). Fig. 3.2 gives the dependence of the relation of medium
frequencies u/u, on value 1 - cos u, for the symmetrical periods of
the type FODO with a relative length of lenses of d=D/S, equal to

d=1/20 and d=1/2.
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Fig. 3.2.
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Graphs/cﬁrves are given for two values of the Coulomb parameter of
beam. On the vertical axis the right scale pertains to h=12 left -
to h=2, In the nasty approximation/approach the ratio u/u, is
uniquely determined by the given value of the Coulomb parameter éﬁa
on cos u, does not depend. From the graphs/curves given in Fig. 3.2
it is evident that the medium frequency is calculated in the smooth
approximation/approach with the high accuracy. A relative error in

the calculation g with cos u,2-0.2 does not exceed 50/0.

Fig. 3.3 and 3.4 give the maximum e¢:(0) and minimum ¢, (0) values
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of Floquet's modulus/module in the channel FODO with d=1/2.
Graphs/curves are constructed for three values of the Coulomb
parameter h, equal to 0; 1/2; 2. Dotted line showed the outer limits
of modulus/module, calculated in the smooth approximation/approach

according to formula (3.37). Function ¢:(v)= —g¢, (1) corresponding to

this case is given in Fig. 2.20.
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Fig. 3.3.

Page 200.

Prom the graphs/curves it follows that smooth approximation/approach
gives the error in the determination of the matched values of
envelopes, which does not exceed by 10o/0 to value/significance of
cos u,=0.3. This value/significance corresponds to the
approximately/exemplarily five periods of focusing field for one
period of transverse vibrations (in the absence of noticeable space

charge). With an increase of the Coulomb parameter relative error in
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the determination of the values of Floquet's modulus/module falls.
The graphs/curves, analogous to those constructed in Fig. 3.3 and
3.4, occur also for the channel with short lenses (d=1/20). With cos
u.,20.3 an error in the smooth approximation/approach is virtually
identical for the channels to the long and short lenses. At smaller
values of cos u, the error in the channel with the short lenses

increases more rapidly than in the channel with the long lenses.

I1f at the entrance of channel Floquet's modulus/module does not
‘have an extremum, then the definition of the matched initial
conditions requires the calculations of both moduli/modules and
derivatives. Fig. 3.5 and 3.6 give the results of the numerical
calculations by the envelope of matched beam with the asymmetric
period of the type FOD with two clearances of relative length 0.1 and
0.25 and with two lenses with a length of d =0.325each (model of the

period of focusing field in the linear accelerator of protons I-2).

e ——
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Along the axis of abscissas are deposited/postponed the values of the
Coulomb parameter on the logarithmic scale. Calculations are carried
out to the high values of the Coulomb parameter and in Fig. 3.5 and
3.6 are given for one value/significance of medium frequency cos
#,=0.415. Dotted line corresponds to the values, calculated in smooth

approximation/approach (3.37), moreover in this case
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The approximate curves follow precise ones in entire range of change
of the Coulomb parameter. The error in the determination of Floquet's
modulus/module does not exceed 10o/0, while the error in the
determination of derivatives of modulus/module composes 20o0/0 at the
low values of h and decreases with an increase in the Coulomb
parameter. Taking into account that the experimental determination of
the absolute value of the phase volume of beam hardly can be produced
on the real beam with the higher accuracy, the errors of the
approximate computations should bé considered completely

satisfactory.

Thus, for calculating the matched initial conditions they must
be assigned: to function Q.(r), Q,(r) of the chosen channel: the
two-dimensional phase volume of beam V,: the full current of beam in
peak I. According to these data it is possible to find reduced volume
(2.111) and characteristic Coulomb length (3.23) on the entrance of
channel, which makes it possible to write equations for the envelopes
(3.26). With the aid of electronic computer is determined the only
periodic solution of these equations with the period Ar=1. If
solutions are found, then this determines the parameters of matched

beam at the entrance of channel r.(0), r,(0), %}«».;%u». Instead of two

latter/last derivatives it is possible to determine the




]
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inclinations/slopes of envelope in the radians
drg | dry dry 1 dry

@3 @S
As it was shown above, in many practical cases it is possible to be
restricted to the smooth approximation/approach, which makes it
possible not to resort to the numerical solution of equations (3.26)
or (3.27). In the smooth approximation/approach the initial
parameters of matched beam take the form

=y OV AV TR

= g o) R VTR

4 0) = 1/5’--‘{,%(0) V VTR

o=y RoyiyToR
Functions g¢. (1, g, (), determined by equation (2.224) and conditions
(2.226), (2.227), make it possible to find the medium frequency of

transverse vibrations u, (2.229) and the Coulomb parameter of beam on

the entrance of channel (3.34).
Page 203.

In the nasty approximation/approach the relation of the semi-axes of
the matched section and the relation of the inclinations/slopes of
envelopes are determined only by the parameters of the focusing
channel and do not depend on phase volume and beam current. However,
the absolute values of semi-axes and inclinations/slopes depend

substantially on the phase volume of beam and phase current density.
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With a change in these parameters it is necessary to again select

matching conditions.

Let us examine as an example the entrance of the linear
accelerator of protons I-100 (see § 2.9). Since the period of
focusing field is symmetrical and begins from the middle of lens,
matched beam must have at the entrance of accelerator a crossover., If
phase current density is negligible, then h=0 and at the entrance we

have

,;4/%“‘%wmr%4/%u—mmw

We will use the fact that Floquet's modulus/module reaches at the
entrance of the channel of outer limit (e=0) and it is converted

formula for r}. r). According to expressions (2.156), (2.234),

P 0
Ve = (1493 °

Hence

=y, p_yh, (3.40)

Yo ' Ya

Relationships/ratios (3.40) are valid in the general case, since when
e =0 the relation of the semi-axes of the ellipse, which limits the
phase volume of matched beam, is equal tov. V,=0,1cmemrad. In the
case of S=28A in question and in accordance with formula (2.113)
P,=0.04 cm*®*. The instantaneous values of frequencies calculate from

the matrix/die period and with cos u,=0.6 they are equal to

[t P S R
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vpo =035, v; = 1.9. Hence r; =035 cm; r =0,15 cm. Let us assume now that
the peak beam current is led to 400 mA with phase volume |,-02cm x
mrad. Then we have F,=0.08 cm? and h=0.68; this gives r, - 066 cm,

r, =028 cm. The relation of the semi-axes of section is retained.

I1f phase current density is negligible, then the mean radius of
unmatched beam, as it was shown in Chapter 2, it oscillates with the
doubled medium frequency of transverse vibrations of single
particles. From the frequency of local maximums it is possible to
judge the medium frequéncy of transverse vibrations of particles in
the beam. The maximum sizes of unmatched beam are determined by its
principal maximums and they always exceed the maximum size of matched

beam with the same phase volume.

At the essential phase current density the picture of the
behavior of the envelope of unmatched beam considerably becomes
complicated. The repetition frequency of principal maximums
increases, but the value of'principal maximums which was kept
approximately constant with h=0 (see Fig. 2.14), begins to oscillate

with the relatively low frequency, much less than Q.
Page 204.

The integral relationship/ratio between the medium frequency of the




- A

DOC = 82105210 PAGE ,2(3'34

oscillations of particles Q, and the repetition frequency of the
principal maximums of envelope is disrupted, so that from the
frequency of local maximums it cannot be more judged the medium
frequency of the fluctuations of particles within the beam. As in the
case of h=0, with h#0 the maximum size of unmatched beam in a rather

long channel always exceeds the size/dimension of matched beam. With

the decrease of phase current density the frequency of principal |
maximums is decreased and within the limit it vanishes. The envelope
of unmatched beam with the high phase current density is
schematically depicted in Fig. 3.7. Wifh the virtually attainable at
present values of phase current density the oscillations of principal
maximums can be revealed only in the very long channels. Thus, with
h=1 (which is close to the Coulomb parameter of the beam which can be
achieved/reached in the contemporary proton accelerators) the period

of oscillations of principal maximums is approximately 300 periods of

focusing field. In the linear accelerators the Coulomb parameter
decreases with an increase in the energy of particles, so that also
this period gradually grows/rises. Thus, if are assigned initial
conditions, then the maximum size of unmatched beam in the channel

virtually completely is determined by the first principal maximum.
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Fig. 3.7. Key: (1). Repetition frequency of focusing field. (2).
Frequency of oscillations of principal maximums. (3). Repetition

frequency of principal maximums.

S 3.4. Focusing of matched beams during different stationary

distributions of phase density.

All given relationships/ratibs, which are determining the effect
of Coulomb pushing apart on transverse vibrations of particles, are
obtained on the assumption that occurs the stationary microcanonical
distribution of phase density in four-dimensional phase space (3.13).
In this case each beam section in the strong-focusing channel is
limited by ellipse with uniform density distribution of space charge
according to the section and equations of motion prove to be linear

with the divided variable/alternating.

Page 205.
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During the microcanonical distribution the representative points of
particles lie/rest only on the surface of four-dimensional
hyper-ellipsoid; the four-dimensional phase volume of such a beam is
equal to zero. Real beams possess different from zero
four-dimensional phase volumes. In connection with this it is
important to explain, as are changed the obtained
relationships/ratios, if we switch over to other stationary

distributions of phase density.

In § 3.3 it is shown that smooth approximation/approach gives
completely satisfactory accuracy in the entire virtually interesting
part of the first stability region. On the other hand, smooth
approximation/approach makes it possible to pass from the equations
of motion whose coefficients clearly depend on time, to the
autonomous equations, i.e., to the equations with the constant
coefficients. If we average equations of motion (3.7) along the
period of focusing field, then Hamiltonian corresponding to these
averaged equations proves to be in the matched beams constant of
motion. Then it is possible to determine the self-consistent
solutions for the averaged motion, on the basis of the fact that the
function of the distribution of phase density depends on constants of
motion of the averaged equations. Essential is the fact that the
actual trajectories of particles are connected with the solutions of

the averaged equations through the periodic coefficients whose value
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depends not on space charge, nor on the distribution of phase
density, but it depends only on focusing fields themselves. Therefore
constant of motion of averaged equations remains in the
approximation/approach accepted and the integral of the initial
unaveraged equations. In the smooth approximation/approach it is
possible to present task to the end/lead and during some other
stationary distributions, different from the microcanonical.

Subsequently let us examine the following distributions.

1. Distribution, analogous to distribution of Fermi for

degenerate electron gas [821]:

1
n = n, = const n(l,'l H<H,

(3.4D
n=20 npu H>H,.

Key: (1). with.

Distribution of this type we utilize also in Chapter 4 in the

examination of the longitudinal vibrations of particles.

2, Distribution, analogous to canonical [82]:

.H.
n=ne o, (3.42)

and leading to Maxwellian particle distribution according to thermal

velocities.
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In the preceding/previous paragraph smooth
approximation/approach was used for the averaging of equations (3.26)
vhose form already corresponded to the concrete/specific/actual

function of particle distribution in the self-congruent field.

Page 206.

We novw utilize smooth approximation/approach directly for the
averaging of general/common/total equations of motion (3.7), making
thus far no assumptions about the form of the function of
distribution. Transition to the autonomous equations can be completed
only for the matched beams, since with the unmatched beams in the

Coulomb terms of equation remains explicit dependence on the time.

Thus, let us assume that the medium freﬁuency of transverse
vibrations of particles is much lower than repetition frequency of
the focusing structure. Let us decompose derivatives of potential,
entering equations (3.7), the power series for the low values of the
rapid components of trajectory we will be restricted to linear terms.

According to expression (2.222),

(D) =X(v)+4: (1) X (1);

(3.43)
y® =Y (")+q, ()Y ().

For derivative -%é we have
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X a Uy v
Gk g D=5 XY, 0= (X Y, 1eX -

o , .
+—5;3—y—(x. Y, T)qu*‘- (3.44)

Analogous resolution we will obtain also for derivative 2. Let us

ou
substitute sums (3.43), (3.44) in equations (3.7) it is averaged

equation for the period of focusing field. Taking into account

equality (2.229) in exchange for equation (2.228) we will obtain

1
dzx , S2 I e ‘
T T [f‘:'f' 8:5’\(" \ 9=(1) 57 (X, Y. t)dt:) X -
0
t
eS? . g .

+gpy ¥ \ 9 () gy (X Y, Dhdr—

0

1
eS? 3 .
+gpiv o | VXV 9dr=0.

b
We utilize for a comparative evaluation of members of the formulas,

obtained under the assumption about the microcanonical distribution.

Coulomb potential satisfies equation (3.18), whence

o + oy !
dx2 oy aggferyr, *

In the smooth approximation/approach, according to expression (3.29),

for the matched beam we have

2 a1 o
ax3 T 38 T T TnegBeK: (1 =9x—4q,).
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Since in smooth approximation/approach the beam is close to the
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axisymmetric,

Hence

where r,— the characteristic Coulomb length, determined by formula

(3.23). But in accordance with relationships/ratios (2.233), (3.32)
TSk G lioag, L

Thus, terms, which contain under the integral sign second derivatives

that of potential, it is possible to disregard. The averaged

potential U in the matched beam does not depend on the time
CX.Yy=\L(X. Y. ndr

As a result after averaging we have the following autonomous system

of equations of the motion

22X _ eS?

o TRX T t:ﬂ’v’ X XY =0, (3.45)
ary '
FEHRY - t.ﬁ'\“ o 7 (X, V)=0.

Potential U(X, Y, r), undertaken at point X, Y, is determined by
the equation of Poisson (3 18)
PU X, Y, 9F G (X Y 0= — oKX Y 0. (3018

After averaging equation (3.18a) for the period of focusing field we

will obtain




s

[
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where
i

(X, V)= \ (X, Y, rydr.

Finally, averaging on the period of focusing field expression (3.1),

we have

Q(X, ¥V)=e S Vrx, v, X ¥idXav, (3.47)
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Subsequently let us e#amine the autonomous dynamic system motion
by which is described by equations (3.45). X, Y - generalized
coordinates of this system. Let us name/call the dynamic system of
that averaged indicated, and the corresponding to it model of bundle
-~ by averaged beam. Of the sense of expression (3.47) n (X, Y, i, Y)
- the distribution function in the phase space of the averaged beam.
Thus, value n must depend only on the first integrals of equations
(3.45). After solving together equations (3.45)-(3.47) when n -
function of constants of motion, we will obtain the self-consistent

solutions for the averaged beam. These solutions correspond to the

" self-consistent particle trajectories averaged on the period of

focusing field in the real beam. If they are known to particle
trajectory in the averaged beam X(r), Y(r), then the particle

trajectories of the real beam are determined directly according to

formulas (3.43).
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Equations (3.45) have an integral of the type of the integral of
the energy:
H(X. Y. X, ?)=%(}¥=+i’=)+;—u;(x=+w>+ij—.}ﬁ C (X, ¥).
(3.48)
If we substitute into expression (3.48) of equality (3.43), then we
will obtain approximation for constant of motion of particles in the
real beam

. - l /- 2.
H(x. y. x, y. f)=»‘2m[k\x— 9= x) -rll,',x’]-i-

I+gy

Ll e NTT st g g P
Taisgnrl ¥ l—wy>'+my]+t@w““Jfﬁ'1fw)’

The obtained function H(x, y, x, y, 7) is not the Hamiltonian of

reference system.

The potential averaged on the period of focusing field of the
proper field of beam has axial symmetry. Let us switch over to the
cylindrical coordinates

X=RcosV¥; Y=Rsin¥.
Then _
OX. N=UR); X, V)=o)

Let us introduce designation for the complete transverse particle

momentum
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P=V kiiv,
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Constant of motion (3.48) and the equation of field (3.46) can be

rewritten in the form

1 5o ! . N 2 14a.

H(R. P)= 5 P+ wR + gy U(R): (3.4%)
a1 d L= :

TR RS Ty R (3.456)

The potential of proper field within the beam satisfies the boundary
conditions

U(©0)=0; I (0)=0. (3.50)
The functions of distribution (3.13), (3.41), (3.42) let us relate to

the phase density of the averaged beam.

Let us examine, first of all, the microcanonical distribution

n(R, P)=ngd(H—H,).
In this case

o

e® -=2nen,§ 8(H —H,) PdP.
0

But, according to expression (3.49a), with R=const we have PdP=dH,

whence

@(R)=2nen, \ 8(H—H,)dH =2aen,.

o3 g
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The averaged density of space charge evenly distributed over the

section of the averaged beam. Current in the beam

J=e ] et v, D v

on r does not depend. After averaging on the period of focusing field

we have

R

C
1=2nv_\g'(R)RdR. (3.51)
0

Hence

!/
~ = const.
awR;

o!
)
]

Substituting latter/last expression in equation (3.49b) and taking
into account boundary conditions (3.50), we obtain the following

solution for the averaged potential within the beam

Ty 1 (RN
U(R)= 400 \ R. /
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The equations of motion of particles in averaged beam (3.45) in this
case prove to be linear and taking into account designation (3.23)

are reduced to the form

2
%',.’i+(u:—-;'°7>X=o;

ay ,_":i
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The averaged solution in plane XOZ exists

X (%) = Ry cos (ut +6;,),
%{(r) = — R, sin (pv +85),

where

. (3.52)

Integral curves on planes X, X and Y, Y are ellipses. The boundaries
of the averaged beam they reach particle with a maximum amplitude of
averaged oscillations of R,=R,=R.. To these particles corrésponds on

the phase plane the XX trajectory

X3 X1
A% =1, =
Ré’*]ﬁﬁf (3.53)

covering the representative points of all particles. The product of
the semi-axes of ellipse (3.53) is equal to F,=pR:. The reduced
" volume of real beam in the general case is determined by the
expression

Fom T gyr®.
Substituting in this expression of equality (2.235), (3.29), we
obtain, that in the smooth approximation/approach F.-;;. Further,

since u-ré%. that of equality (3.52) we have

po e _ 58
(]

-2 0.
R: R

Hence a radius of the averaged beam is equal to
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R = ‘/%L"n Ty

where

"
s

= 2u0F,

it is the Coulomb parameter of beam.
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Solution for a radius of the averaged beam coincides with solution
(3.35) for the mean radius of matched beam, obtained above as a
result of the averaging of strict self-consistent solutions in the
real beam with uniform density distribution of space charge according
to the section. Therefore all conclusions, which relate to the

matched beams with smooth envelope, are applicable.

Let now the phase density of the averaged beam be distributed
according to the degenerate law: n=n, with HgH, and n=0 with H>H,. In
accordance with integral expression (3.47)

Pane (7

Q(R)=2nen, \ PdP
»

or
Q(R) = neny [Praxc (R)I®.

Since for any assigned R transverse impulse reaches maximum
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value/significance with H=H,, then from expression (3.4%9a) we have

2082
ioﬁ’\j

The density of space charge is distributed in the beam section

P;alc=2Ho—“:R2—' L(R)

according to the law

6(R)=neno[2Ho—p§R 6%, L(R)J (3.54)
Let us substitute expression (3.54) in the equation of averaged
potential (3.49b). For the decrease of the subsequent recordings let

us introduce the designation
R B,

= €0 Drpin 87 - (3.35)

Then equation (3.49b) is reduced to the form F
oy 1 dU 177 B, /8 2 )
D -ty i A R

Let us switch over to the dimensionless radius

_ R 3.56
s= Ro . (30b)
In this case
U ar 38, 7 |
U= R — H,

The solution of homogeneous equation, final in zero, is the modified

Bessel function of zero-order I,(s) [86].
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The particular solution of nonhomogeneous equation takes the form
U= ﬂvio(H 2P:R'—— R’s’)

Taking into account boundary conditions (3.50) we will obtain the

following solution for the potential
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U(s) = B0 [ @uiRI—Hy) {1y (5) — 1} 5 WIRIS" | . (3.57)

From formulas (3.54), (3.57) follows the expression for density

distribution of charge according to a radius of the averaged beam

g (s) = 2eqp! pyﬁn [] Kl 2HR’\ 1y (s)] (3.58)

The density of space charge becomes zero on the boundary of averaged

beam R=R :o(k)=0, where k= °. Thus, for parameter k, which is
0

determining a radius of averaged beam R, we have

Iy(k) = —-—‘—,,7—— (3.59)
T 2uiRY
and expression (3.58) is reduced to the form
Q) =gt BXEe [1—Je ] (3.58a)

Further, according to expression (3.51), beam current is equal to

k
| = 2n0R® S 2 (s) sds.
0

Hence
Baye/ 21, (k)
RS [1 -[.—'(,)]. (3.60)

We will use expression (3.23) for characteristic Coulomb length:

3
2l (b "a
| — AT _—ng . (3.61)

Is found one equation (3.61) for definition of two unknown values R.,
k from the assigned parameters of beam and channel r,. u,. The second
equation must be the expression, which connects values k and R. with

the transverse phase volume of beam. Let us note that the entering
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distribution (3.41) value n, was replaced with the dimensionless

parameter k, to operate with which more conveniently.
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For the case of singular distribution we will obtain the
equations of motion of particles in the averaged beam.

Differentiating function (3.57), we have

U _ BN (250 ey
X ~—  eS? [,sl., (k) ! l“ox' (3.62)
U __ﬂ_’v‘"é'o T2l s s
¥ T et Luo(k)—l]“")‘

Let us substitute these expressions in equations (3.45):

axX LU0

LX) x o

dx? 0 Slo (k) (‘503)
a2y o

FT T slg(Y) "

The equations of transverse vibrations of particles in the intense
beam with singular distribution of phase density prove to be
nonlinear, since according to expression (3.56),

s= 4= VX 77,

Above is obtained the expression for the potential of
self-congruent field during stationary singular distribution (3.57).
Pirst integral (3.49a) it is possible to now write in the more
specific form. Substituting potential (3.57) into constant of motion

(3.49a) and utilizing equality (3.59), we obtain

! , 1o (5)—1
H(S, P)='2— P’-y—Ho -l:-:%;—_T .
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Since for all particles of beam HgH,, then

Pr<2H, {1 “_’(‘;’):_—‘l] .

Since P?20, then the particles, which reach the periphery of beam,
corresponds constant of motion H=H,. Transverse particle momentum,
which reach the periphery of beam, is connected with the current

radial displacement by the relationship/ratio

3 __ — Iy {5y —1
P _2Ho[l AT

To the periphery of beam s=k and the complete transverse impulse
becomes zero. Constant of motion for the particles, which reach the
pefiphery of beam, takes the form

T P4 (,) o1 (s)-,—(’:—;': Iy (k).

Let us replace H, with its expression of equality (3.59)

 lols) _ 2oRS

—‘P"*'?P:Rc IR R R
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Thus, the representative points of peripheral particles lie in the

four-dimensional phase space X, Y, X, Y on the locked hypersurface

B s o 1 VEER S |
4M2R§ (X : Y ) J Io(k) 10 \k Rc —/'—-l. (364)

This hypersurface encompasses the representative points of all
particles in the four-dimensional phase space of the averaged beam
and is, therefore, the boundary of the phase volume, occupied with
beam. If during the microcanonical distribution the representative
points are arranged/located only on the hypersurface, then in the
cése of singular distribution the representative points fill the
limited four-dimensional volume. The projection of four-dimensional
phase volumevon plane X, X is determined with the aid of equations

(2.310) and takes the form

B A Y S
; ApgR2 RN ) l'<k xR )=b
(3.65).

Projection coincides with the section of four-dimensional volume
(3.64) by plane Y-0; Y=0. The curve, described by equation (3.65), is
given in Fig. 3.32 The semi-axes of this figure, according to

expression (3.65), are respectively equal to
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Xuane = R

Doy 2 I
Xuakc = —:2‘ Rc Vl "m -

Taking into account equality (3.59) we will obtain X,.=1 2H,.

The reduced volume of the real beam F, regarding exists divided
into 7 the projected area of phase volume on plane 1, %},
Specifically, during this determination reduced volume is connected
with the value of two-dimensional phase volume with
relationship/ratio (2.113). In the smooth approximation/approach =F,
it coincides with the projected area of the phase volume of the

averaged beam on plane X, dX/dr

C

| nF,=4 | XdX.

OOy D

The curve, described by equation (3.65), is not ellipse.
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FPig. 3.8.
Page 215.

Therefore reduced volume is not equal to the product of the semi-axes

of projection and,_according to equation (3.65), it comprises
To(RE) 4o o
Fo=-2o R; ( Yi-L® Bl gz, (3.56)

Equality (3.66) - this is second missing equation for determining the
values R. k. Let us introduce for the decrease of recording the

following function from k:

i
| m(k)=—,f,—§w.(k>—1.<k§)ds

A radius of the averaged beam can be now written in the form

= YT -
1/ Ly Yun. (3.67)

Let us substitute expression (3.67) in equation (3.61). This it gives

ko (=21, (k)

R0V T b (3.68)
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where h - introduced above Coulomb parameter of beam (3.34),
proportional to phase current density. Thus, in terms of the given
value of the Coulomb parameter it is possible to determine the
auxiliary parameter k, with the aid of which is determined a radius
of the averaged matched beam. Formulas (3.67), (3.68) together give
the dependence of a radius of the averaged beam on the Coulomb
parameter, analogous to simpler dependence (3.35), obtained for the

microcanonical distribution.

The modified Bessel functions of zero and first order near k=0

take the form

k3 ke
ly()y=1+—+ 5+

k B3,
L=+t -

Hence with k<<l it follows

gz(kj=1+ ngs B,

Re_‘/{%—(l-k—%gk'-e-...);

1
! ) h-—Ts—'k"{"---,

Page 216.

Thus, value . , -

R = -i—:- (3.69)




DOC = 82105211 PAGE w’l

is a radius of the averaged matched beam at the negligible phase
current density. Formula (3.69) coincides in by expression (2.237).
At the low values of phase current density the equation of curve
(3.65), which limits the transverse volume of beam to plane X, X, is

reduced to the form

.Y.

=1—23h.

“0c c

With h=0 curve (3.65) degenerates into the ellipse.

Since equations of motion (3.63) are nonlinear, then the
frequency of transverse vibrations during singular distribution
depends on amplitude. For paraxial particles s<<l1 and from equations

(3.63) we obtain

ax
at’*/(m X=0.

The frequency of small transverse vibrations with h#0 is equal to

VI. T (3 70)

The frequency of transverse vibrations of particles, which reach beam

boundaries, is determined directly from the equation of phase

trajectory (3.65):

—....

(3.71)

1L AVEH S
Br ® ] lom—/o )’

"At the low values of the phase current density of expression




DOC = 82105211 PAGE M‘

(3.67), (3.70), (3.71) they take the form

p=p(l—2n=-...),

e 5 .. N
p,r=po\l—'—4—h-7-.../l .

paraxial particles complete oscillations with the frequency of of

lower than the particles, which reach beam boundaries.

From formula (3.68) it follows that parameter k monotonically
increases with increase in h. In accordance with increase of h
increases a radius of beam in the assigned focusing field. However,
at any value/significance of h (in other words, at any
value/significance of phase current density) a radius of beam retains
finite value and, therefore, beam does not lose stability, if only

the aperture of channel is sufficiently great.
Page 217.

If k>>1, then function I,(k:) remains small in comparison with
value I,{(k) in the range 02f(>1 up to the values %, very close to
unity. Integrand in the formula, which is determining function %),
with increase of k graphically approaches a rectangle with the
basis/base, equal to unity. Therefore function %) at infinity

behaves as

"R (k) =2 VTo(B).
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Function I,(k) with the increase of argument asimptotically tends for

I1,(k). Hence with k>>1

arTy
=Ry 5 ¢ -
TR

h=T€ .

Distribution according to a radius of the averaged density of
three-dimensional/space charge in the case of singular distribution
is described by formula (3.58a). Combining expressions (3.58a),
(3.60), it is possible to represent the dependence of the charge

density on a radius in the form
: W I
i r 24k LN Rc/ -
() L T ) [‘ w7

Here s
avR:

Q=

is density of charge average over the section.

The canonical distribution of phase-density (3.42) leads to
following density distribution of space charge according to the

section of averaged beam (3.47):

Do = ;H(R.P)
'o(R)-znen.,ge 8 pdp.

0

Let us substitute into this formula the general/common/total

expression for constant of motion (3.49a):
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6(R)=2nenoeexp——.” ulR? + B’ - U (3.74)

Taking into account expression (3.74) the equation of averaged

potential (3.49b) takes the form

/ ooy o . 4 Py eS?
R AR \R dR /) - € exXp— 8 \ 3 5 R? TEbTE
Let us introduce instead of the averaged potential T(R) the new

function

Wm=%urﬁé~%ﬁm+ﬁgﬁv\- (3.75)

Page 218.

According to expression (3.75),
C U AL . >
e ~ BB ( -+ WR) - (3.76)

If we utilize the dimensionless independent variable

s= “_oé R,

then we will obtain the following equation for function V(s):

1 d s av N i.-utn,s!e
T E (7% )+ 2= mepr;V O

Let us select now constant V, as follows

Vo--—m:%’%-r . (3777)

Then equation for function V(s) is reduced to the form




‘%
*
5
|
1
e
{
i
!
i
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dy .
%.%(%.%)=V(s)—-2. | (3.78)

Initial conditions for function V(s) can be determined from

expressions (3.75), (3.76) according to conditions (3.50),

superimposed to the averaged potential

VO)=Ve: 2 (0)=0. (3.79)

Density distribution of charge along a radius of the averaged
beam is-determined by equalities (3.74), (3.75)

e (s)=2nenoelv‘oi’ . (3.80)

The full current of beam (3.51) is equal to

Atengv?
: la“—“;goi—s V(s) sds. (3.81)

0

Substituting in equality (3.81) for V, its expression (3.77) and

utilizing designations for characteristic Coulomb length (3.23), we

obtain

. . -

S Vis)sdsm-3 . (3.82)
0 .

During the canonical distribution of phase density the
representative points are propagated over entire four-dimensional

phase space. Therefore beam, generally speaking, does not have

terminal radius.
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However, phase density rapidly drops during the removal/distance from
the origin of coordinates, so that basic part of the beam current is
concentrated in the region near the axis. Let us accept as a radius
of averaged beam R. a radius of the section, which covers 1 1000/0

of total beam current:

uoR‘.." Ve ®
\ Visysds=1n\V(s)sds. (3.83)
'Rt~ radius of the averaged beam (in the sense indicated above) at
the negligible phase current density. Then the reduced volume of beam
F, it is expedient to define as the value, entering
relationship/ratio (2.237):
- rR=yR (3.84)
bo

Actually/really, in this case

' RFo= o (RE)
the area, occupied on plane by those X, X particles which give the
contribution to the useful part of the full current of beam 1100%,

y
Vo= ﬁ; Fo

the two-dimensional phase volume of this part of the beam.

Introducing into equality (3.84) the dimensionless radius
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Ho 0
So = —2- R?,
0 ) F [
we obtain F
0 =Ftoo (3.85)

s§

Relationship/ratio (3.82) takes the form

2
"a

—

— 3
\ V(s)sds= Fy S
0
But combination the sublimity
i
"=

coincides with introduced at the analysls of other distributions

Coulomb parameter of beam in the given focusing fields. Thus,

V(s)sds=2sh. (3.86)

Ty 8

Equality (3.86) is convenient to those that express the integral of
the unknown function V(s) through the universal dimensionless

parameter h,

Page 220.

Different distributions it is expedient to compare between themselves
at one and the same value/significance h, which does not depend on
the type of distribution and which connects beam current, the phase

volume of beam and lens power.
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Value s, it is easy to determine. In the absence of space charge

U(s)=0. In this case, as it follows from equality (3.75),

_E.I
Vis)=Ve 2,

After substituting this function into expression (3.83), we will

obtain

Hence

st=—In(l—n). (3.87)
Let us note that the value of integral (3.86) of selection s, does
not depend, since function by V(s) its initial conditions (3.79) is
determined unambiguously. However, arbitrary remains the selection of
the limited value/siénificance of the phase volume of beam and,
therefore, of Coulomb parameter of beam at the assigned parameters of
beam and channel 7, o 1f we define the two-dimensional projection of
the phase volume of beam as rggion, where fall 90o/o0 of all
particles, then n =09 and s,=2.146. To virtually more conveniently
conduct calculations, after assuming s,=2; in this case in accordance
with expression (3.87) 3 = 0,865.The numerical calculations whose
results are given below, are given for case of s,=2. Thus, as a
radius of the averaged matched beam was accepted a radius of the

section, which covers 86.50/0 of the full current of beam.
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Since value V, is actually unknown, the initial condition
v(0)=V, must be replaced by integral condition (3.86). For each given
value of the Coulomb parameter h function V(s) is determined by
equation (3.78) and two supplementary conditions:

( V (s) sds == 2s3h; -‘;S—V (0)=0.
0

Now there can be found the fundamental characteristics of matched
beam during the canonical distribution of phase density. Equalities

(3.82), (3.86), (3.87) give equation for determining the mean radius

of the Beam‘

Y se(n)

! } ]
S V(s)sds=2s(1—e 24,

0

Page 221.
Here - e . .
= R, 3.88
sc (h) ‘,éRc o ( )
whence _— ————— , N
R.(h)=R? 1%’_"— : (3.89)

Finally, from expressions (3.80), (3.81), (3.86), (3.88) it is
possible to find density distribution of charge according to the beam

section for each given value of the Coulomb parameter:
-/ RN si(h) R
e(m)=o—gmV(sr)-
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p. there is average density of charge in the averaged beam

!
.u'Ré )

Q=

We investigate the behavior of function V(s). Since with
increase in s the density of space charge p(s) must decrease, then
with s>>1 we have V(s)<<l. Consequently, with s>>1 equation (3.78) is

reduced to the following
7 s dv
T E) ==

The asymptotic behavior of function V(s) in infinity is described by
the expression

V=V,ste” % ". (3.90)
On the other hand, substituting V(s) from equation (3.78). in equality

(3.86), we obtain

[2.;._{_._“_(—;-.‘“, \]sds

258 = ds ds /

o 8

or - -

!<s’+iv%>”—(s=+—:,— %>“0=2s:h.

According to expression (3.79), second term on the left side is equal
to zero. For first term we can use asymptotic expression (3.90). This

it gives a=2s?,h. Thus, with s>>1

-lul
V(s)=V,s*heT 2",




DOC = 82105211 pace M7
Page 222,

In the near-axial region s<<l1 and V(s) ®V,. Equation (3.78) gives

N

d 7 s dVN\_ o '
AT (2—Va)s.

e

whence
1,.\9
V=v°e‘(“é‘°)2. (3.91)

Equation (3.78) has the particular solution V(s) =2. with V=2

integral (3.86) diverges and gives h==. Thus, with a change of the
Coulomb parameter within the limits 0<h<e value V, respectively is
changed in the limits 0<V,<2. The behavior of function V(s) at the

different values of the Coulomb parameter is shown in Fig. 3.9.

Let us determine the frequency of transverse vibrations of
particles. Constant of motion (3.49a) taking into account equality

(3.75) is reduced to the form

‘HR, P)=-1pPr—ein LR (3.92)

According to expression (3.19), for the paraxial particles we have

' H(R, P)=—;-P’+—;-(l—%9->p,:R’,

or )
v
(=7

P L R* = const.
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The projection of the phase trajectory of paraxial particle on each
of the phase planes X, X or Y, Y is ellipse. The medium frequency of

small transverse vibrations (to scale of axis r) is equal to

P'=Mo‘/l—-;—vo,
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Fig. 3.9.

Page 223.

At the low values of current density we can assume for any s

Substituting approximation for function V(s) into integral (3.86), we

obtain .
-'-,gi

Vo \e 2 sds=2sh.

e —"3f

Consequently, with h<<l we have V,~2s®*,h and

With s,=2 this value coincides with the frequency of small transverse

vibrations in the beam with the low phase current density during

singular distribution.

w—




DOC = 82105211 pacE YsP

Particles with the given value of constant of motion achieve
maximum divergence from the axis with P=0. For the peripheral
particles, which have the maximum amplitude of oscillations ~.. from

constant of motion (3.92) it follows

Particle with coordinates Y=Y=0 moves in plane X, X over the phase
trajectory

AR RN

TR, 9, =0
Hence can be obtained the medium frequency of transverse vibrations

of peripheral particles during canonical distribution :

Let us compare between themselves different cases of the

stationary distribution of phase density.

In Fig. 3.10 is presented distribution of the averaged charge
density over the beam section for the cases of the degenerate and

canonical distributions. From the graphs/curves it is evident that at

the low values of the Coulomb parameter density distribution of
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charge by a radius differs significantly from uniform. With an
increase in the Coulomb parameter density distribution of charge in
both cases approaches uniform. Hence it follows that at the high
values of phase current dersity the parameters of beam must not
depend either on the value of the phase volume of beam, or on the

distribution of phase density.




DOC = 82105211 PAGE AMI

re)
—— - Bu.> xdennop JOCRDESAGNUE

2/
—— - KON IYeLXDR DOLNDEOPNENYS

i, 4 A

0 /8 74 J/e 12

Fig. 3.10. Key: (1). Singular distribution. (2). Canonical

distribution.
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Fig. 3.11. Key: (1). Degenerated. (2). Canonical. (3).

Microcanonical.
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Page 225.

Fig. 3.11 gives plotted functions

RL

for three distributions of phase density. At the low values of the

-Coulomb parameter these functions have a somewhat different course;

however in view of smallness h functions (3.93) do not manage to
noticeably diverge. Since with h—»= charge distribution according to
the beam section approaches uniform, then functions (3.93) for
different phase distributions must with h->»= converge.

Actually/really, with h>>1 for the microcanonical distribution from

formula (3.35) we obtain

]
h) = l/2h+§,,-- (3.94)

In the case of singular distribution from formulas(3.67), (3.68) it

follows

x, (1)
f(h) = ‘/2" CINOES IR

If k>>1, then

fin= Y 2h 5. (3.95)

Finally, in the case of canonical distribution with h>>1 we have

Vv(s)=2 to s>s.. From formulas (3 83), (3.86) we obtain

’c

{ 2sds = 2stnh,

]
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or si=2sinh. According to expression (3.89),

fhy =} n} 2. (3.96)
At the sufficiently high values of the Coulomb parameter expressions
(3.94), (3.95) coincide and give

f )y = ) 2n. (3.97)

In the case of canonical distribution is obtained the somewhat
smaller value in view of the fact that the mean radius of matched
beam was determined for n< 1. However, at the high values of h the
distribution of charge along the radius has steep/abrupt
shear/section. Assuming/setting with h>>1 value n of close one to
unity, we obtain also for the canonical distribution formula (3.97)
instead of (3.96). Thus, in entire range changes in the Coulomb
parameter of function f(h) for all three distributions remain very

close.
Page 226.

During the degenerate and canonical distributions the equations
of motion are nonlinear and the frequency of transverse vibrations
depends on amplitude. One should in this case consider that are
obtained the solutions for the stationary functions of distribution,

so that the nonlinearity indicated does not lead to an increase in
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the equivalent phase volume of beam. Formally the
retention/preservation/maintaining of phase volume is guaranteed by
Liouville's theorem. In this case have in mind such changes in the
forms of phase volume which could virtually lead to the result,

equivalent to a change in its value.

The dependence of the medium frequencies of transverse
vibrations on the Coulomb parameter for different distributions is
given in Fig. 3.12. Along the axis of ordinates is
deposited/postponed the ratio of medium frequency u« at this
value/significance of the Coulomb parameter to value u,, of
appropriate h=0. The thickened line relates to the linear
oscillations, which correspond to uniform density distribution of
charge according to the beam section. Dotted curves correspond to the
frequencies of transverse vibrations of paraxial particles in the
nonuniform distributions. With an increase in the Coulomb parameter
of beam the frequency of particles, which move near the axis of
bundle, rapidly decreases. From the point of view of the excitation
of incoherent forced oscillations is important the frequency of
peripheral particles. The medium frequencies of peripheral particles
for the degenerate and canonical distributions are plotted/applied by

continuous thin lines. With a limitless increase in the Coulomb

parameter all curves in Fig. 3.12 must asymptotically pour.
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Fig. 3.12. Key: (1). Canonical. (2). Degenerate.
Page 227.

From Fig. 3.12 it is evident that the frequency of particles, which
reach the periphery of beam, during singular distribution virtually
remains sufficiently close to the frequency of linear in entire range
of a change in Coulomb parameter. During the canonical distribution
the effect of transverse pusﬁing apart on the frequency of particles,

which reach periphery, proves to be less than highly expressed.

All stationary distributions examined with the accuracy of order
5-100/0 lead to one and the same numerical ratios between the

sizes/dimensions of matched beam and the Coulomb parameter of beam in
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the assigned applied fields. Thus, the self-consistent solutions
prove to be little sensitive to the form of the distribution of phase
density in the four-dimensional phase space. In this sense
four-dimensional phase volume proves to be the volume, which
corresponds sufficiently to large number of degrees of freedom.
Actually/really, let us examine four-dimensional sphere. If we divide
in half a radius of this sphere, then within the sphere of a half
radius will be located only 1/16 part of all particles during the
even distribution. Rest 15/16 all particles will lie/rest at the
external spherical layer. If we disregard/neglect the fields of the
particles, which fall into the internal sphere, then it is evident
that even distribution in the four-dimensional space must lead to the
macroscopic parameters, close to the appropriate parameters at the

microcanonical distribution.

The canonical distribution of phase density nearer than others
corresponds to real beams. However, assumption about the
microcanonical distribution leads to the simplest and easily
forseeable relation between the parameters of beam and parameters of
the focusing channel. From all that has been previously stated, it
follows that the questions, connected with the effect of Coulomb
pushing apart on transverse vibrations of particles, it suffices to
examine, using formulas derived from the assumption about the

stationary microcanonical distribution of phase density.
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§ 3.5. Coherent oscillations of particles in the beam.

If the axis of bundle coincides with the axis of the focusing
channel, then all phases of transverse vibrations are equally
probable. The fluctuations of particles in this beam are incoherent.
Beam is symmetrical relative to longitudinal axis in each of the
planes X0Z and YOZ, and the center of the ellipse, which limits
transverse phase volume, coincides since the origin of the
coordinates on thé phase plane (see Fig. 2.13). Errors in the
focusing field (for example, displacement and the inclinations/slopes
of the magnetic axes of quadruéole lenses), and élso the error in the
injection lead to the beam displacement as whole. In this case appear
the oscillations of the center of gravity of beam (Fig. 3.13a).

Appears coherent component transverse vibrations of particles.
Page 228.

On each phase plane x, dx/dr and y, dy/dr the region, occupied with
the representative points of the particles of the beam, is displaced
from the origin of coordinates and rotates around the initial point

(Fig. 3.13b). Let x,, y, - coordinates of the center of gravity of

beam, determined by the equalities
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where the addition is conducted through all N to particles in this
section. Let us note that in the equations of transverse vibrations
(2.53) the coordinates of particle x, y are ccunted off from the
magnetic axis of lens. Coordinates x, y, entering the Coulomb terms
of equations (3.24), are counted off from the axis of bundle. In
equations (3.24) the coordinates of particle x, y could be carried
out as the signs of brackets only on the assumption that the axis of
bundle coincides with the axis of channel. Let us introduce
coordinates x, y, caléulated off the axis of channel, and coordinate
x, y. calculated off the axis of bundle,

i.—.x—-xo; 9=y—yo.
Then expression for potential of the proper field of beam (3.21) will

take the form
Usm ~z-0(®) [#+p~
re—ry

—T, (x2—g%) ] + const,

and equations of motion (3.24) can be rewritten in the form

d2x 2ry
Fi+Q:(v) x_T:(-’:_.—‘-"ﬁ (x—x0) =0;

dsy 2y
,Tp‘*‘Qu(")y—m (y—yo) =0.
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If we write N of such equations for each of the particles of this
section, sum up equations and sum divide into N, then we will obtain

the following equations of motion of the center of gravity of the

beam

2
N 4 Q. () 1 =0
(3.98)
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Fig. 3.13.
Page 229.

Equations (3.98) coincide with the equations of transverse vibrations
of particles in-the beam with the negligible phase current density.
Thus, in the free space the center of gravity of beam completes
transverse vibrations with the frequency, for which the proper field
of beam does not affect. Physically this is obvious, since Coulomb

forces are internal and their resultant must be equal to zero.

As it was indicated above, the metallic surface of circular duct
does not affect field within the axisymmetric beam, which is spread

along the axis of duct. But if beam section is not circular, then in

the proper field of beam appear the nonlinear terms, small in
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comparison with basic linear field component (during uniform density
distribution of charge according to the section). Therefore the
effect of metallic walls on the frequency of incoherent they
disregarded/neglected. However, the dependence of the frequency of
coherent oscillations on the phase current density can arise only due
to the wall effect of channel, and therefore this effect cannot be

rated/estimated disregarding by metallic walls.

Let us examine the beam of round cross section, displaced
relative to the axis of circular duct with the ideally conducting
walls (Fig. 3.14). The length of the period of coherent oscillations,
as a rule, is substantially more than the transverse sizes/dimensions
of beam. Therefore the potential of the proper field of beam can be
found in the approximation/approach of two-dimensional problem.
Without loss of generality we can consider that the beam is displaced
only along the axis of abscissas. . R.- radius of
beam; R, - radius of the metal tube, within which is spread the beam;
x, - center-of-gravity disturbance of beam relative to the axis of
duct. It is assumed that the magnetic axis of focusing field is
combined with the axis of duct. Let us introduce two polar systems.
The center of the first polar system r, ¢ coincides with the axis of
duct; the center of the second system of coordinates s, a coincides
with the axis of bundle. Designations are clarified in Fig. 3.14.

Between both coordinate systems are following relationships/ratios
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$%=r? 4 x§ — 2xor cOs :
rsme (3.99)

tga=
ta reosg—uxg °

Let us assume first that the beam moves in free space

(R7= GJ) R
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Fig. 3.14.

Page 230.

Then the potentials of the proper field of beam satisfy the equations

PO 1AL 1
. ds? ' s ds ey =’
al, 1o, (3.100)

&y s =0
where (,(s) - potential of field within the beam; U,(s) - potential of

field out of the beam. Boundary conditions take the form

Ui(Re) =Us(Re) G R =Ze(R).  (3.101)

From equations (3.100) and boundary conditions (3.101) it follows

Ui (s)= *%324+Uo:
U(s)=—LR’ln<’\-’ e Py
e deg \c R:) e ¢+ Uo-

Let now the beam of particles move within the circular ideally

conducting ducts. V, V. - respectively the potentials of proper field




o
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within the beam and in the space between beam and surface of duct.

These potentials must satisfy boundary conditions on the surface of

the beam
Vi(5. @)ump, = Ve (S, Qlomp;
vV, 1% .
‘%;‘ (s. ‘”‘*RC =67s‘(s. a).=RC: (3.102)

1% v
% (S, Q)smp, = %;‘ (s, a),.nC
and on the surface of the duct

oV

Velr, ®)rmp, =0: FL(r, §)rmp, =0. (3.103)

Let us represent potentials V, v, in the form

Vilr, @) =U(s) + T (r, 9):
Ve(r- (p):U,(s)-}-‘l’(r, ‘P)v

where V¥ - certain harmonic function, which satisfies the equation of

Laplace

¥ SR [ 4

Then Poisson's equation for potential V,, the equation of Laplace for

potential V, and boundary conditions (3.102) in accordance-;ith
equations (3.100), (3.101) are satisfied automatically. Boundary

conditions (3.103) lead to the equalities

WMWﬂ}—memg

avy

U, (3.105)
3‘6‘ (r, W)r-ﬂT = "W (f, ¢)P—R,'

Page 231.




DOC = 82105211 race [§8)

Function ¥(r.¢) must be final on the axis duct, moreover in view of
the obvious symmetry

VYir, q)=V¥ir. —gi.
Dividing in equation (3.104) variable/alternating, we obtain the

general solution in the form of the series/row

Yirog)= 3 Anr™cos mg.
mas(}

In order to satisfy boundary conditions (3.105), let us replace
variable/alternating in function (,(s). According to expressions

(3.99),

R . Rt
Uetr, @) =Un—228 "1 —in 2" = 0C¢

_ Ty __9to. oG
10, =3 i, In" 1—2"cosq -y

On the circle with a radius of R;. with the center on the axis of the

duct

eRY -

bt R~ gﬁf’] /l 2
4'0 . n R

AL 0 cosy — W
Rg/ €0 ' Ry co%y Rt;.,

(3.106)

Ue(Ry, @) =Up— -1

Latter/last function can be in turn, represented by Fourier series
Ue(Re, @) = E B (R+) cos mg.

me(

where with m$0

B,..(RT)=§ \' Ue. (Rs. ¢) cos mg dg.
0

After substituting here expression (3.106), we will obtain (28]

QR% l/ X9 \bm.

Bm(Rr)=m \ Ry,
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Boundary conditions (3.105) are satisfied with

QR i N\
A = N = -— c ‘ X_o N
o= Bo: A ZeqmRT ' Ry .

Hence }
R 2 s S ‘

W(r g)=B8, — ey L 7rom xoom
(r, 9) =B, 5 "Zvl w.R,, R, cosmq. !

The potential of the proper field inside the beam, displaced relative
to the axis of the ideally conducting duct, takes the form

Vir )___2_ 2 _9 QRY ot 1 "5 om sxe\m

i @)= — G (rf— xO’COS(P)—EZ— . ' eos mg —

m 'RT/ \E;,

M

~+ const.

Page 232.

Intensity/strength of field at the center of gravity of the beam

\ v
- —“%l(xﬁ 0), E.- "’}i‘o'a;‘ (xo 0),

or

2!0

Eg= L %)’&2 (&) Ey=o. (3.107)
A=(

Analogous result was obtained in work [87] for the beam, which moves

between two metallic planes.
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Taking into account the conducting surface of duct the
oscillations of the center of gravity of beam in plane XOZ are

described at the nonrelativistic velocities by the equation

42Xo
ded

=eE.~F,,

where F. - focusing force, which acts on the particles in the center
of gravity of beam. After transition to the independent variable 7 we
will obtain

Bry _ S o et
de8  moud’ F meod

E,=0.

1f beam is spread in the space, free from the metallic surfaces, then
Rr=o and E,=0. The oscillations of the center of gravity of beam in

this case are determined by equations (3.98) or, in the smooth

approximation/approach,

Since is examined the averaged beam, one should assume

Fy

.S :
mgd = T Hote.

Let us substitute into formula (3.107) for the density of charge p

its expression through the complete (peak) beam current

1
M a7 §

and ve will be restricted to linear approximation to the proper field

.E- I‘
. Eq _Tm.o,""
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Thus,

d’xo e 3 elsz .
.' F'f_’— + kpt, - 2-1!0”1003[?: \ Xo == 0.

7/

Page 233.

The recording of latter/last equation will be simplified, if we

switch over to characteristic Coulomb length (3.23)

g:ri,q-m‘- (p:-—;—i) Xo=0.
The frequency of coherent oscillations of beam as follows depends on
a peak beam current (being determining parameter r,) and a radius of
the aperture of the channel

pﬁor:-p:—-éé-. (3.108)
Earlier was obtained expression (3.52) for the frequency of the
incoherent of particles in the intense beam. Equalities (3.52) and
(3.108) formally coincide, but they are distinguished by the fact
that in the denominator of Coulomb term (3.52) stands the square of
the mean radius of matched beam, and in expression (3.108) at the
same place - square of a radius of the complete aperture of channel.
Both frequencies with an increase in the intensity of beam decrease;
however, differently. The frequency switch of incoherent oscillations
depends on phase current density; explicitly this dependence is

expressed by formula (3.39). The frequency switch of coherent
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oscillations on the phase volume of beam does not depend and is
determined with the assigned aperture of channel only by peak beam
current and by energy of particles. With an increase in the energy of
particles decreases parameter r,. Since the complete aperture of the
focusing channel must be selected taking into account possible forced
~--:1lations of beam as whole, then it exceeds the maximum amplitude
of the free oscillations: R: > R.. Therefore the Coulomb frequency
switch of coherent oscillations proves to be smaller than for the
incoherent ones. In the beam with the essential phase current density
occurs splitting/fission of the frequencies of transverse vibrations:
the frequency of the coherent oscillations; it r~mains close to the
frequency of particles in the beam with the zero intensity, and
frequency of incoherent relatively rapidly decreases with an increase

in the phase current density.

In § 3.3 is given a numerical example to beam matching with the
strong-focusing channel of the linear accelerator of protons with the
peak beam current 1=400 s and phase volume |, = 02 cmemrad. In the
case u,=0.93 examined; h=0.68. Characteristic Coulomb length (3.23)
with given speed of injection B=0.04, wavelength of accelerating
field A=2 m and period of focusing field S=28A will comprise at the
entrance of channel r =032 cm. The mean radius of matched beam
(3.35) is equal to R: =04 cm. The medium frequency of incoherent

oscillations, calculated according to formula (3.39) or (3.52),

d




F-_-k _
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proves to be equal to u=0.48 and decreases almost two times in
comparison with the frequency in the beam with the zero intensity. If
a radius of complete aperture R:=1 cm, then the frequency of

coherent oscillations (3.108) descends only to Hwr = 0,87.
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Page 234.

S 3.6. Deliquescence of the drifting beam.

Phase current density - this is one of the most important
parameters of those characterizing the quality of the beam, injected
into the accelerator. For determining the phase current density it is
necessary to measure the beam current and projection of
four-dimensional phase volume on the phase planes (transverse phase
volumes of beam), Different experimental installations, intended for
measuring the transverse phase volumes, repeatedly were described in
the literature [61, 62, 88-99). In all these installations the phase
volumes were determined on beam blowup, which drifts in the space,
free from the applied fields. The deliquescence of the drifting beam
it is connect;a with the disordered scatter of thermal velocities and
with the action of its own coulomb field of beam. Therefore it is
important to consider the effect of proper field to the parameters of
the drifting beam or to utilize the measurement procedure which would
eliminate this effect. The motion of intense beam in the space of

free drift is examined in works [100-102]. However, in the works

indicated it was assumed that the particle motion is determined only
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by the pushing apart Coulomb forces; the scatter of thermal
velocities was considered as the negligible. Meanwhile the estimation
of error, introduced by the transverse pushing apart of particles
into the measurements of phase volumes, requires the simultaneous

account of the phase volume of beam and its proper field.

The phase volume of beam it is possible to measure directly
according to an increase in ;he transverse sizes/dimensions of beam
on the assigned path of drift. But more accurate results cah be
obtained, if to consecutively/serially determine the deliquescence of
the narrow beams, cut out from the complete beam with the aid of the
special diaphragms. In the latter/last cases it is possible to find
the distribution of phase particle density according to the volume,
whicﬁ is important for the establishment of the boundaries of the
phase volume of real beam. Fig. 3.15 gives the installation diagram
for measuring the phase volume by the method of "two slots". The
first slot isolates all particles with the assigned coordinate x,.
The second slot makes it possible to establish/install the‘current
distribution of the chosen particles according to the path
inclinations dx/dz. After second diaphragm is established/installed
the current-collecting device - faraday cylinder. Since both slots
pass particles with all values of y, dy/dz, available in particles
with the fixed/recorded coordinate x,, after the circuit/bypass of

all values x we obtain the projection of phase volume on plane x,
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dx/dz (emittance of beam). Method "four slots" is schematically shown
in Fig. 3.16. The pair of slots in the first plane isolates particles
with the given value of coordinates x,, y,. The second pair of slots
makes it possible to measure the current distribution of the chosen

particles according to the path inclinations dx/dz, dy/dz.
Page 235.

if we place horizontal slot in the first plane to position y,=0, and
horizontal slot in the second plane to position dy/dz=0, then this
method makes it possible to determine the section of four-dimensional
phase volume by plane y=0, dy/dz=0. As it was shown in § 3.2, when
the boundary of four-dimensional phase volume can be approximated by
hyper-ellipsoid, the projection of phase volume on plane x, x
coincides Qith the section by its coordinate plane y=y=0 [see

equations /3.14), (3.15)1].




DOC = 82105212 PAGE ¥¥5

Fig. 3.16.

Page 236.

Series circuit by both pairs of the slots of all points of the cross
section of beam in the first and second planes it is possible to
measure the distribution of phase density in the four-dimensional

space.
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Other methods of the consecutive irising of beam in principle
are reduced to one of that described above. For example, for slot in
the second plane can be replaced with light sensitive emulsion with

the subsequent photometric measurement of the places exposed.

Let us examine particle motion on the section of the drift
between two planes. Transverse phase volumes on planes x, x' and y,
y' can prove to be_unequal. In particular, this knowingly occurs in
the diaphragmed beam with the method "two slots". The fact indicated
must be taken into consideration in the equations for the envelopes.
Particle motion in the drifting beam is described by equations (3.7),
if we assume Q:(v)=Q, (v) =0.Since the focusing fields are absent,
parameter S it is possible to consider dimensionless and to place it
equal to unity. Then as the independent variable will figure
longitudinal length r=z:

§§-+53§F-g§=o;
Bt e -0
Let the stationary distribution of phase density - microcanonical

(3.109)

(3.13), so that current density is distributed evenly over the beam
section, and equations (3.109) - linear, with the divided
variable/alternating [30]. Since the independent variable in

equations (3.109) is dimensional, let us change the conditions for




—
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the standardization of the dimensionless complex conjugate pairs of

fundamental solutions (3.65)

dxy dx 9
—_—yr
xx dz XI dz Ex '

axy ax :

s 4Ly 2
Xy =5 dz — Ay Tj? = "‘EJ' .

Values E, g ,must have a dimensionality of length. Let us represent
fundamental solutions in the form (3.8). Rate of change of

phase-fundamental solutions proves to be equal to

aw, 1 dy 1
E:o’ ; dz _Eyo; ’

Having repeated the reasonings, given in § 3.2, we will obtain the

following first integral of equations (3.109)
’ doy \z, s dy t%j N2
Flxy G &)= (o3 "E"_ X\ mY)

y \2
+<Ex°: KEUOU /

Page 237,

Let us assume that the representative points of particles lie/rest on

the hypersurface

’

dx d
Fi\x,y,dz, A

dz /

According to expressions (2.310), pro;ection of this hypersurface on
the phase planes they are limited by the ellipses

’ . / x =
(oxx’ —azx)t+ (E a,) 1;

(0yy' —0,9)* + \Eu°v> =1
The products of the semi-axes of ellipses can be determined according

to formula (2.114) and are equal respectively to E, and E, In view of

the fact that the ellipses are examined on planes x, dx/dz and y,
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dy/dz, values £, E, are regarding the emittances of beam. Projection

of hypersurface on plane x, y

/ x N2 7/ y>2=l.

\Exox /" i \E.de

Hence it is apparent that envelope of particles are determined by the
expressions

ref2)=Ec0.(2  r, (5y=E,0,(2).
The linings/calculations, analogous to those given in § 3.2, 3.3,

give the following equations for the envelopes

—_— e ——— =}

dz? 3 s X
= R (3.110)
dz’y E'z:', _ 2a _ O

Parameter a in equations (3.110) is dimensionless and equal to

2=V g

where T - the full current of beam; I, - standard strength of current

(3.22):

Let us examine first the pulverization/atomization of the
non-stopped-down axisymmetric beam with emittances E.=£,=F and
initial conditions

r(0)=ry(0) =ry;

dry dr .
ZO=20=r,

In view of the symmetry of equations (3.110) we have r.(z)=r,(z)=r (). SO

that a change in the envelope of the axisymmetric beam is described
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by the equation

Page 238.

Equation (3.111) is the generalization of the equation, investigated
in works [64, 100-102], and are considered both space charge of beam
and disordered scatter of the transversing speeds of particles in the

beam. First integral of equation (3.111)

/d,\ﬁ_./E | B _i s L ’4_ “e
&) =G -R)+en(R) o

Hence we have

(r,rg)3

2E, _ S ds . (3112
AT O O

Integral (3.112) determines the dependence of the current radius of

the diffusing beam on the path of landing run z. In the literature on
electron optics usually is examined case E «ry;, E <ar, corresponding
to beam with the negligible scatter of transversing speeds. In this

case integral (3.112) is reduced to well known expression [64]

r/re

z ds
i S Vi (3.113)

Formula (3.112) makes it possible to now examine another limiting
case - beam blowup with the negligible current. In the latter case of

a<<gE/r, and from expression (3.112) it follows

wreas
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r 7 '6 F] /E N2
az'/\l+az>-+ka/z? (3.114)

With E=0 from equality (3.114) follows the trivial result
r=ro—rgz.

The same result can be obtained from equality (3.113) with a=0.

If the space charge of beam is negligible, then formula (3.114)
makes it possible to determine emittance and initial angular
separation of beam. For the experimental determination of the values
indicated ratio r/r, must be measured at two peints: z, and z,, after
which it is possible to find both of the unknowns E and r',. In the
general case for determining of emittance and initial angular
separation of beam it is necessary to additionally know full current
of beam and energy of particles, which makes it possible to
previously calculate parameter a. After this of two equations (3.112)
by numerical methods determine the unknéwns r*,/E and (¢',)?/E. If
with z=0 beam has a crossover, then it suffices to measure ratio r/r,

only at one value/significance of z.
Page 239,

The method of measurement of emittance indicated is less precise than

the methods of the consecutive irising of beam.
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Let us rate/estimate now space-charge effect on the disagreement
of the separated part of the beam in the measurements of phase volume
by the methods of consecutive irising. Let us assume that the
measured beam possesses axial symmetry and its phase volume is
limited in the four-dimensional space x, y, dx/dz, dy/dz by the
hyper-ellipsoid

AP +y) +B(x?+y?) +2C(xx" —yy') = 1.

(3.115)

Beam section by plane XOY exists

x“+y"=R".
where
~_VB
R"V,w—_fz'

The emittance of beam for each of the phase planes

E=— 1
" VAB=Ct

is connected with a radius of section R with relationship/ratio
R=EV/B. Let us isolate the part of the beam by narrow vertical slot
with the width 24Ar, also, with coordinate x, (see Fig. 3.15). The
particles of the chosen part of the beam oécupy on the phase plane x,
xi the narrow band with a width of 2Ar (Fig. 3.17a). The maximum and
minimum ordinates of band are approximately equal to the square roots

equation
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whence

The half-height of band is equal to

,__l— _"/59\2
M=ok Vi-2"

We approximate the chosen part of the emittance on plane x, x' by

ellipse. Then the emittance of the chosen part of the beam is equal

to E=ArAx' or

E.<EY /1—(;4’)'.

(3.116)
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=4 .’.“\

.e

e

Fig. 3.17.
Page 240.

Further, let us find the projection of the phase volume of the chosen
part of the beam to plane y, y'. Particles with fixed/recorded
coordinate x, fill the three-dimensional ellipsoid

F=Ay'+ B(x'3+y'%) +2Cxox’ +2Cyy’ = | — Ax’.
Values x', which correspond to points in the curve, which covers the
projection of this ellipsoid, are determined.by equation §§q=o, Hence
x'={¢/B)x, and projection is described by the equation (see Fig.
3.17b)

Ay +By3+2Cyy =1,

where




DOC = 82105212 pAGE 45

Emittance of the chosen part of the beam on plane yy'.

E=E(1-3).
Let us cut out now beam by supplementary narrow horizontal slot with
the width 2Ar, also, with coordinate y, (see Fig. 3.16). According to
expression (3.116) the half-height of band on plane y, y' will be

equal to

, 1

Ay = —— - -

Y V B, ‘/1 y:(-“:
Assuming/setting for the part of the beam, isolated with two mutually
perpendicular slots, E, =ArAy’ and replacing A,, B,, C, by appropriate

expressions (3.117), we will obtain the equality

_E—l/l “3 ys

In view of axial symmetry E.,=E,,.

In the diaphragmed beam, isolated with two intersecting slots,
emittances E,, E, are equal and for the evaluation of space-charge
effect it is possible to use expression (3.112). The diaphragmed beam
has the zero initial disagreement (see Fig. 3.17a), so that for it
r',=0 and instead of integral (3.112) we obtain

(rrant
2E,, " ds

— 2 —————————— .

pir= | e

g 1 ‘/s—H-(“éA’)z:ln:
e

Parameter a, in interval (3.118) corresponds to the diaphragmed beam

(3.118)
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and in the constant current density in the section of complete beam
is connected with parameter a of complete beam with the

relationship/ratio

Page 24|,
Hence
aydr ukR

Ar
R TEERVANN S

The coefficient under the integral sign (3.118), connected with the
Coulomb pushing apart, in the diaphragmed beam proves to be
substantially less than in the complete beam. The effect of Coulomb
pushing apart on thg velocity of the deliquescence of the diaphragmed
beam falls from the decrease of the width of slots, if only slots are
not located on the edge of beam. Physically this is connected with
the fact that the emittance of the chosen part of the beam decreases
proportional to the width of slot (since with the irising far from
the edge of phase volume Ax'~“const; see Fig. 3.17a), but beam
current it falls propo}gional to the square of the'width of slot. If
slots are sufficiently narrow, then Coulomb pushing apart can be
disregarded/neglected. This fact is the important advantage of the

methods of the consecutive irising of beam.

Function s 1ln s calculation is more rapid than s-1. Therefore in
proportion to beam blowup the effect of Coulomb pushing apart is

amplified. Let it be the drift of the stopped-down beam for reasons
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of the accuracy of measurements it must be as more as possible.
However, to disregard/neglect the effect of the proper field of beam

is possible only in such a case, when the path of drift is limited.

- '
s —  Iuawe -

MaKe = @ ——— .

Ao ]

Coulomb pushing apart can be disregarded/neglected, if

CoagAr NG .
’—[j_ 1 Swake 1M Syane -+ Svawe — 1. (3. 11D
x1 -

Requirements for the accuracy of measurements lead to condition

swe > 1. Then from inequality (3.119) it follows
r n/ E \:f XG--u 205
moge < 3 () (-7 (1

Let now the diaphragmed beam be isolated only with one slot, for
example vertical. The initial sizes/dimensions of envelopes are equal

to

@ =ar =R} 1 ENS

Page 242.

1f slot is not located on the edge of beam, then the chosen part is
the strip/tape beam which has r.(0) «r,(0). On the limited path of drift
will be preserved inequality r.<r, and a change in the envelopes will

be described approximately by the equations
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75“‘73“‘7j==& (3.121)
Ay _Ey_ 2
dz2 ray Ty ’
where e g =00
a,=a Rt

Let us replace in equations (3.121) the variable/alternating

rz(2) ry(2)
Uy (Z) =':(0); Uy (Z)= ?:W)— .

In the designations

__Es . _ r(0) | 2 2a3
=P’ F=71o Y=im

of equation (3.121) let us rewrite in the form

(3.122)

moreover u,(0) =u,(0)=1; k¢ 1. From equations (3.122) it is evident

that a relative change of the envelope in the vertical plane is

considerably less than in the horizontal, since
(3.122) corresponds to beam with the relatively
and t&e low current. In other ﬁords, strip/tape
in essence occurs the relative expansion of its
Therefore for further estimations we can assume

approximation/approach indicated first equation

(%‘)2=e’<l —é—) + 26 (ug—1).

second equation

small phase volume
beam diffuses so that
narrow side.

u, (2 =~ 1. In the

(3.122) gives

J e
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Toward the end of the section of drift u,=uuu. The effect of the
proper field of the diaphragmed beam can be disregarded/neglected, if

. 3 - 1 “
sz (u_“,(c—- 1) ez ( l -_— ”—:—‘ } -
~ MaKC -

After assuming 7, . M\ Or lUwac > |. we will obtain

r2

Umake < %i -
Page 243.
Hence
Tvage , L .z ,\;';‘ . .
A CF ey, g (3.123) U
For the non-stopped-down beam the condition under which it is

possible to disregard the effect of proper field to beam blowup,
follows directly from integral (3.112), Let at the initial point of
drift the beam have a crossover with a radius of r,=R. Coulomb
pushing apart can be disregarded/neglected, until beam blowup exceeds
the values, determined by order of value by the inequality

1 7 E N2 .
Tlak. - (3.124)

In TMexe ¢
Condition (3.123) is harder/more rigid than condition (3.120).
The method of four slots makes it possible to suppress the effect of
the proper field of beam better than this is reached by the method of
two slots. Let us examine a numerical example. Let the measured beam
have transverse phase volume, approximately equal to | =02 cmemrad,
with the full current I=200 mA and at the given particle speed

B=0.04. Let us accept the width of each slot of the equal to 1 mm, a
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radius of beam in the crossover 1 cm. Then E=5 cmemrad; a=6.3+10"3;
E/aR=0.8; E/Agils. For the non-stopped-down beam condition (3.124)
gives

In Zeaxe o032, lvae oy
Thus, to determine phase volume on the deliquescence of the
non-stopped-down beam without taking into account Coulomb pushing
apart in the assigned parameters is virtually inadmissible. For the
beam, isolated with one slot, we will obtain

Tuane ¢ 200 1 — 7%

If slot is displaced to position x,=0.9R, then ™ - jo. which makes
it possible to still conduct measurements with the necessary
accuracy, without taking into account three-dimensional charge of
beam. For the beam, isolated with two slots, we have

a 2~
X5~ Ui

r'sake 7 2
ln—A,— <4 400 '\ RZ

or with “Vx3,+y?,=0.9R.
r ©
In M2 < 80.
Latter/last inequality virtually does not limit the permissible

expansion of the diaphragmed beam.

s i T

:
'
ﬂ
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§ 3.7. Limitations of beam current in the strong-focusing linear

accelerator.

The mean radius of matched beam in the strong-focusing channel
of linear accelerator grows/rises with an increase in the transverse
phase volume of beam and with an increase in the peak beam current.
Since the aperture of channel is limited, proves to be limited the
maximum peak beam current in the assigned fields. The ratio of the
mean radius of matched beam with the given value of the Coulomb
parameter h¥0 to the mean radius of the beam of zero intensity with
the same transverse phase volume is determined by formula (3.93).
Multiplying numerator and denominator on the left side of equality
(3.93) at the maximum value/significance of the modulating function
l+q(r), we will obtain that in the smooth approximation/approach
function (3.93) determines the relation of the maximum values of the
envelopes: . H

e ),

MaKc

Beam is passed without the losses through the focusing channel, if
rvave<a, wvhere a - radius of the aperture, diverted under the free
fluctuations of particles. Beam current reaches the maximum

permissible value/significance when ru. = a. Hence
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Fakc = ,—(a*h“ . (3.125)

By latter/last equality is assigned the maximum size of the matched
beam of zero intensity, which has the same transverse phase volume,
as the beam of the maximum permissible intensity. The transverse
phase volume of the beam of zero intensity is determined by formula
(2.125) and can be represented in the form

Vo= = v0! wnt (Fane)?,
where o\uy - minimum value/significance of the frequency of
transverse vibrations of particles in the beam of zero intensity.
After substituting expression (3.125) into the latter/last formula,
we will obtain the maximum phase volume of the beam which can be
passea through the focusing channel at the value/significance of the

Coulomb parameter h#0

V07w 92
Vo= —mh
or
v
Vl('l = ,’(;) ’

wvhere V, - channel capacity (2.126).
Page 245. 4

In the principle the behavior of function f(h) depends on the form of

the stationary distribution of phase density. However, as was shown

in § 3.4, the behavior of this function depends on the form of
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distribution very weakly and for further estimations it is possible
to utilize function (3.35), obtained for the microcanonical
distribution

=1 =) i

Thus,
“z="(l i v“l"'—};'). Ny

|-

Since the Coulomb parameter is proportional to phase current density,
with an increase in the phase current density of beam the maximum
permissible phase volume of the beam, passing through the channel

without the losses, decreases.

Let us assume that the transverse phase volume of the beam,
injected into the accelerator, is lower than the capacity of the
focusing channel of accelerator. If phase current density in the beam
is small, then will be fulfilled also inequality i, |., From an
increase in the phase current density value \,, falls. The maximally
high value/significance of phase current density, which corresponds
I = huaxe, Will be achieved/reached when 1", = V.

Va=V_ (1 T—hiage —Huanc)
Hence follows

| “; Vo 27
Ruake = '\' ""l:‘ . (3.127)

? 1t v
Expression (3.127) determines a maximally possible peak beam current
at the given values of the channel capacity and transverse phase

volume of beam. Taking into account designation (3.36) we will obtain
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(103]

(ll
b

vane = =y By 1 1 ~
With the assigned energy of particles and in the assigned parameters
of channel a maximally possible current decreases with an increase in
the phase volume of beam. An increase in the current cf injection
lw. makes sense as long as /.. </ww. If an increase in the current
of injection is accompanied by a simultaneous increase in the
transverse phase volume of beam, then maximally possible current /ya..
descends. In this case the current of injection can prove to be not
used completely. With an increase in the current of injection they
increase in essence only of the loss of particles in the accelerator.
Hence it is apparent that an increase in the current of injection is
effective only in such a case, when simultaneously there does not
occur a considerable increase in the transverse phase volume of beam.

A considerable increase in the current of injection must be

accompanied by the appropriate increase in the phase current density

of beam.
Maximum peak current is reached when 1, |, and it is equal to
2009
lnpen=£yq—?tvnfo- (3.128)
Page 246.

Taking into account expression (3.128) we have

!
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M|

LT (3,129,

Lo =logea ] 1= 4"
A maximally possible peak current is virtually equal to maximum, if
the transverse phase volume of beam approximately/exemplarily three
times lower than channel capacity. Further reduction in the phase
volume of beam, if it can be realized, already insignificantly
affects the strength of maximally possible current of the accelerated
beam. On the other hand, the increase in the Coulomb parameter,

connected with an increase in the phase current density, leads to

unjustified lowering of frequency of incoherent.

An increase in the amplitude of transverse vibrations due to the
random errors in the focusing fields is approximately determined by
expreasich (2.280):

N .
Ad 2‘; Siaxe, (3.130)

where vy = wan 7y, and sum is taken on the basis of all independent
sources of errors in each period of focusing field. The
disturbances/perturbations of path inclination in each lens, in view
of the fact that the disturbance/perturbation occurs in the small
section of longitudinal axis, do not depend on the forces of Coulomb
pushing apart. Actually/really, after replacing envelopes in the

equations of motion (3.24) by appropriate expressions (3.29a) and

disregarding small components/terms/addends g4.. ¢,, we will obtain




SN
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“d2x

EZ_T.[Q_:‘R;;I‘F];=O (3.131)

Equation (3.131) it is possible to use for describing the particle
motion in the section of one lens with Q=const. From equalities

(3.32), (3.34) it follows

Sora Nt g 2h
R Ty T
Relation (%}”F monotonically is changed from zero (with h=0) to u?,
. c .
with h=>»=», Thus, always
7 org N2
\\ﬁi‘) <y

But in the smooth approximation/approach, according to expression
(2.229a), u?,~~qQ and, since |g|<<1, we have u?,<<Q. Hence

7 2
%) <@
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If oscillations are examined in the short section of change r, then
it is possible to disregard the Coulomb térm of equation (3.131). The
disturbances/perturbations of oscillations in the section of each
lens can be calculated on the assumption that the phase current
density is negligible. Space-charge effect on forced oscillations of
pafticles is determined only by the frequency switch of oscillations.

Let us divide sum (3 .130) into two parts

.\’, . N .
(AR e Y N A T N L
AA Tt Ax; S Ax 2
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Into the first sum enter the disturbances/perturbations, connected
with the external errors (displacement and the inclination/slope of
the magnetic axes of lenses), and into the second -
disturbances/perturbations, connected with the parametric errors
(scatter of the gradients of focusing fields, the rotation of median
axes). External errors act on all particles they equally and displace
beam as whole. The effect of external errors depends on the frequency
of coherent oscillations v, Parametric errors lead to incoherent
forced oscillations with minimum frequency ;. of that connected with
vy the relationship/ratio, analogous (3.38),

vih =80 (| T—h=h).
The frequency of coherent oscillations weakly depends on the space
charge of beam, but frequency of incoherent with an increase in the
Coulomb parameter substantially descends. The portion of inéoherent
disturbances/perturbations grows/rises, as which proves to be
necessary to stiffen either all structural/design and electrical
allowances or only allowances for the parametric errors. Thus, a
considerable reduction in the frequency of incoherent is undesirable
and, therefore, is undesirable an excessive increase in the phase
current density. From that presented it is evident that the

relationship/ratio

is optimum. It should be noted that when / -=/,,. and V,=13V, the

allowances for the parametric errors in the initial part of the
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accelerator descend approximately/exemplarily three times.

Maximally possible peak beam current in the focusing channel is
higher, the greater the value of limiting current (3.128). Limiting
current depends only on the parameters of accelerator and it is not
connected with the quality of beam. For the analysis of formula
(3.128) the latter it is convenient to convert, utilizing expressions
(2.106), (2.126), which are determining the medium frequency of
transverse vibrations and channel capacity

1.,,,,,.=E9§< LY B @)
We investigate the basic methods of increasing the limiting current

of beanm..
Page 248.

With the assigned structure of channel values ue and vy are
connected unambiguously, since u, - the medium frequency of
transverse vibrations to scale 7, and v4 - minimum value/significance
of this frequency on the same scaie. The parameter u, in the limits
of stability region has certain optimum value, which ensures value
v§, close to the extreme, with the smallest expenditure of power for
focusing. Optimum selection noncritically depends on the structure of

channel. Thus, product pevy is determined during the optimum selection

virtually unambiguously.
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Thus, limiting current it is possible to affect only by a change
in the energy of injection W, and ratio of the aperture of
accelerator to the period of focusing field. In the assigned ratio
S/B\ we have /,,.,==fy*. With the energy of particle injection into the
ionic accelerator Lorenz's factor remains still in effect equal to
unity, so that limiting current is proportional to square root from
the energy of the injection

lupen= V' W,.
An increase in the energy of injection is hindered/hampered due to
the complication of operation and rise in price of the injector, as

which usually is utilized the electrostatic accelerator.

Further, limiting current increases proportional to the square
of the ratio of the aperture of channel to the period of focusing
field. In the accelerating systems with drift tubes with an increase
in the aperture deteriorates thé-gonfiguration of high-frequency
field in the accelerating clearances and descends the factor of
transit time. However, this fact is not deciding during the selection
of aperture. Thus, in the majority of the acting proton accelerators

it would be possible to still considerably increase aperture without

a noticeable reduction in the factor of transit time. More essential

prove to be the limitations, connected with an increase of the
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magnetic core induction of quadrupole lenses with the assigned
gradients of focusing field. In the magnetic quadrupole lenses is
limited maximum induction Bu. in the poles, generatrices to Linz.
Analogous limitations to the maximum stress/voltage between the
electrodes lenses. Let us examine in more detail the case of magnetic

lenses. The maximum gradient of the focusing field

BM.K(‘

Gnm: = m ’

where Aa - part of the aperture, diverted under induced oscillations,

regions with the large nonlinearity of field and the thickness of

aperture tube. Let us introduce for the simplification the equivalent

value of the maximum induction

B.(umc = BMX:;
4
Page 249.
Then
= Bune
MANC T a

Ratio a/s can be represented in the form
a ‘ . . \
S T 5% S. (3.133;
If assigned the parameters u,, D/S and the factor of defocusing 1.

then is fixed/recorded the hardness of the lens

N 2/ I)‘_'—'_rG
K:=$ NI

As is noted in § 2.6, the necessary gradient of focusing field weakly

depends on ratio D/S, somewhat increasing with the decrease of this
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Ho. 7. B
relation. With selection A is actually fixed/recorded product S:3G.
Consequently, with given ones . 7. and energy of injection all values
in expression (3.133) are fixed/recorded except the period of

focusing field. Thus,
= S.

wie

Hence it follows that from the point of view of the guarantee of the
permissible induction in the poles of lens with an increase in the
period of focusing field § it is possible to increase the aperture of
channel proportionally S?. In this case the limiting current also

increases proportionally S?.

However, in the linear accelerators increase S is limited by the
allowed values of the factor of defocusing and, therefore, possibly
only with a simultaneous increase in the wavelength of accelerating
field. Actually/really, from éhe expression for the factor of the
defoéusing

Strrant
pr. \o,

h=ﬁ<
it follows that ai the fixed values of specific acceleration and
energy of injection the period of focusing field can be raised only
proportional to the wavelength of accelerating field S=\, and if is

fixed/recorded the amplitude of middle field, then S=VX.

1f the aperture of channel is increased more rapidly than the

wavelength, then, as it is noted, the factor of transit time in the
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accelerating system with drift tubes deteriorates. However; within
considerable limits this increase of the aperture is possible that it
makes it possible to raise the intensity of beam in the linear
accelerators due to an increase in the sizes/dimensions of

accelerator.

. At the selected optimum value u, the necessary value of gradient
Gusxe C@N be lowered, and aperture is respectively increased due to the

decrease of the factor of defocusing 7.
Page 250.

The latter is achieved by the decrease of the absolute value of
synchronous phase. However, this it conducts to the decrease of the
capture region of particles into acceleration mode and, therefore, to

the decrease of average/mean beam current.

Under W, = const and other equal conditions an increase in the
wavelength of accelerating field from 1.5 to 2 m raises limiting

current 1.8 times. If the transverse phase volume of beam proves to

be comparable with the channel capacity, then maximally possible

current (3.129) increases still more significant, since an increase A
at given value v{ makes it possible to substantially raise channel

capacity. Actually/really, according to expression (2.126),




—
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=

vr: = Y\'&

./‘ A

A a2
S A

so that channel capacity is proportional to \°.

For the numerical estimations of a maximally attainable
intensity of the accelerated beam it is necessary to have data about
the phase volumes of the beams, injected into the linear accelerator.
Are at the present time measured the phase volumes of proton beams

for some ionic sources. Unfortunately, the results of measurements,

obtained by the different authors, is difficultly to reliably
compare, since processing experimental data was performed employing
différent procedures. For example, in work [95] is introduced a
priori assumption about the axial symmetry of beam. In this work was
determined the integral current distribution of beam by
four-dimensional phase volume, i.e., the dependence of the value of
four-dimension:l volume from the portion of the full current,
included in this part of the volume. In work [61] it is a priori
assumed, that the sections of four-dimensional volumes by hyperplane
y=y'=0 coincide with the projections of these volumes on the phase
plane x, x', and was determined integral distribution on plane x, x'
not of the full current of beam, but the current of particles,

isolated with slots y=0, y'=0.
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From the results of work [95]) it follows that in the center
section of the four-dimensional phase volume of the beam of protons,
generated by duoplasmatron (2, 62, 104-112], the phase density is
distributed evenly. According to the data of this work the value of
four-dimensional phase density in the center section of the volume
does not depend on the mode/conditions of ionic source. On the
periphery of four-dimensional volume phase density decreases up to
zero. Apparently, the irising of intense beam would make it possible
to obtain beam with the highest ratio of full current to the

four-dimensional phase volume.

According to the data of the authors, who measured the phase
volumes of the proton beams, which contained from 90 to 99%/0 of full
current, the phase current density, defined as the ratio of full
current to the two-dimensional projection of phase volume, proves to

be lying/horizontal within comparatively narrow limits.

Page 251.

Experimental data testify, apparently, about the fact that the phase
current density weakly depends on the mode/conditions of source and
over a wide range of a change in the beam current remains
approximately constant. According to the data of work [93], phase

current density in the beam, generated by duoplasmatron and measured
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at the output of the high-voltage accelerating tube, at different
modes/conditions of source lies/rests in the limits of 150-220
mA/cmemrad with the beam current to 150 mA. Phase current density in
the beam, generated by high-frequency source [2, 113-115], somewhat
below. For the modified source of the type of duoplasmatron [112]
work {[95] gives the value of phase current density 300 mA/cm-mrad

with the beam current to 480 mA.

Let us accept as the original value of phase current density at

the output of the injector

jo= TI',,“=3°0 mA/cmemrad.

This value can be before the entrance into the linear accelerator
raised. In the beam of protons, which emerges from the electrostatic
accelerator (injector of linear accelerator), the particle they are
distributed evenly on the phases of radio frequency voltage of linear
accelerator, and the scatter of particles on the longitudinal
impulses/momenta/pulses is substantially less than the vertical
spread/scope of separatrix. Between the injector and the linear
accelerator it is possible to establish/install the buncher, intended
for increasing the portion of particles, seized into acceleration
mode [2, 116-118]). Klystron type buncher, usually utilized for the

ionic accelerators, is the cavity resonator, loaded with two span




s i i AP b e i s~ L A e £

Vot a7 e e oo 1

DOC = 82105212 PAGE ##5

half-tubes. High-frequency field in the clearance between half-tubes
modulates the longitudinal velocity of particles. Let us assume that
a phase difference between the field in the buncher and the field in
the first resonator of linear accelerator is selected in éuch a way
that the particle, proving to be synchronous in the accelerator,
flies the clearance of buncher at the moment of the passage of the
field through zero toward increase. The velocity of synchronous
particle in the buncher will not change. Particles, which
anticipate/lead synchronous in this period of radio freguency
voltage, will be inhibited, and the particles, which move after the
synchronous, will accelerate themselves. In drift space between the
buncher and the linear accelerator occurs grouping of particles. The
length of drift is selected so that up to the moment/torque of the
entrance of synchronous particle into the linear accelerator of the
phase of remaining particles they would be as near as poésible to the
synchronous. Thﬁs, even prior to the beginning of acceleration beam
is modulated on the density along the longitudinal axis. Clusters
follow with frequency of accelerating voltage. Buncher transforms the
phase volume of beam on the plane of longitudinal vibrations
¢,g==2%?!: due to an increase in the scatter of particles in the
longitudinal velocities it is reduced the scatter of the larger part
of the particleé on the phases of accelerating field so that the
phases of the majority of the particles, injected into the

accelerator, would prove to be within the capture region.
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Page 252.

The strain of phase volume on plane ¢.gfzﬁiﬁ’ is shown in Fig. 3.18.
Region 1 corresponds to the phase volume of beam on the entrance into
the buncher. After sinusoidal modulation of the longitudinal
velocities of particles in the clearance of buncher the phase volume
is converted into region 2. Region 3 - the result of the strain of
phase volume in drift space. The same figure gives the boundary of
the region of the capture of particles to acceleration mode. The
process of preliminary beam bunching leads to an increase in the
phase density in the four-dimensional phase volume of transverse
coordinates and impulses/momenta/pulses. Actually/really the buncher
in the first approximation, does not affect the transversing speeds
of particles; therefore the scatter of particles on the transversing
speeds in drift space is not changed, but increases a numbér of
particles in each cross section of beam in the region of clustering.
This effect does not contradict Liouville's theorem. In the equations
of motion, which correspond to buncher and to the section of drift
under the usual simplifying assumptions the variable/alternat ng are
divided. Therefore in accordance with Liouville's theorem ust be
retained the value of phase volume for each of three phase planes.

However, because of modulation of the longitudinal velocities the
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condition of retaining/preserving/maintaining the number of particles
in the element/cell of the four-dimensional volume of transverse
coordinates and impulses/momenta/pulses is not satisfied, so that the
corollary of Liouville about the retertion/preservation/maintaining

of phase density in this case does not occur.

At the absolute value of synchronous phase in limits of 30-40°
buncher makes it possible to raise average/mean particle density in
the clusters approximately/exemplarily two times [2]. Therefore
during the estimation of the maximum peak current of clusters in the
accelerator it is possible to be oriented toward the value of phase
current density j=600 mA/cm-mrad. Since, judging according to
preliminary experimental data, j=const, with an increase in the
current of injection increases the transverse phase volume of beam.

This leads to a reduction in the maximum permissible peak current.
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Fig. 3.18.

Page 253.

Let us substitute the value of the transverse phase volume

Twax.
vn - __‘uu;vr .

into formula (3.129). We will obtain the following dependence of a
maximally possible peak current on the phase current density in the

injected beam

2 .
L uaxe = Inpea r—l:f ;x;:'h . 13.134)
where
.S N
= [ —gi - (3.135)
=1 v,
Let us examine as an example the short-wave accelerator of

protons with following parameters [14]:
Ho=1,05; v =0.50: S = 2¢:..
Po=0,04; a=09 cu; A=200cwm.

According to expression (3.132), the limiting value of peak current,

Vy
Vi

which can be achieved/reached in this accelerator when 1, is
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equal to /g., = 1.67 q. However, to the value/significance indicated in
the experimentally measured parameters of proton beams it is
impossible thus far to approach. From formula (3.135) we have h=0.19.
Hence /wixe =031 /ope.. A maximally possible peak current of cluster
proves to be equal to /. =320 mA. The average/mean current of the
accelerated beam in accordance with relationship/ratio (4.58) when
wsq. =08 is /;, = 100 MA. The given estimations can prove to be
somevhat optimistic, since they assume that the beam is sufficiently

well matched with the channel.

Returning to the question about the optimum identification of
the parameters of the strong-focusing system of linear accelerator,

it is possible to make following conclusions.

1. Calculation of channel for stability is conducted without
taking into account space charge of beam. For this calculation it is
possible to utilize diagrams of Smith-Glyukstern or diagram on plane
Y. cospu,. INn special cases can prove to be moré convenient and other

diagrams.

2. Should be designed channel for maximally large capacity. For
this it is necessary to obtain the largest possible
value/significance of the minimum frequency of transverse vibrations

oham Of synchronous particle and the widest possible aperture. For

_
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obtaining maximally possible value w., it is necessary to select the
optimum value of cosu, of synchronous particle, ensuring greatest
value/significance vy with the sufficiently low values of the
gradient of focusing field, and the smallest possible value of ratio

S/B\ with that fixed/recorded ;.
Page 253.

The expansion of the aperture of the focusing channel, diverted

under the free oscillations, is achieved:

1) by an increase in the wavelength of accelerating field, if

aperture is limited by the value of magnetic induction in the poles:
2) by transition to the pulse supply of magnetic lenses (in the
pulsed accelerators) if constraint of aperture is associated with the

dissipation of power in the lenses;

3) with a reduction in the nonlinearity of focusing fields due

to an improvement in the form of poles;
4) by the careful adjustment of the focusing lenses.

3. Calculation of structural/design and electrical allowances
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for focusing channel should be conducted taking into account space

charge of beam.

4. Matched initial conditions for envelope of particles and
parameters of matching network also must be determined taking into

account space charge of beam.

5. lonic sources and optic/optics of injector must be selected
of condition of obtaining highest possibie phase current density. In
the optimum case the transverse phase volume of beam must be
approximately/exemplari.y three times less ‘than the capacity of the

focusing channel of accelerator.

The majorities of working and planned proton linear
strong-focusings accelrator serve as the injectors of proton
synchrotrons. Therefore it is of interest at least under the simplest
assumptions to rate/estimate maximally nec;ésary current of injection
in the proton synchrotron. Let us examine the strong-focusing proton
synchrotron for which it is possible to utilize some
relationships/ratios, meridional above.

In the circular accelerators any disturbances/perturbations of
those focusing, fields periodically are repeated with the frequency,

equal to the fundamental frequency of the rotation of particles. Let
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Q - number of transverse vibrations, which fall for one revolution.
With Q=1 the frequency of transverse vibrations coincides with the
frequency of disturbances/perturbations and is excited the first
external resonance, which virtually leads to the loss of beam.
Remaining external resonances appear on the harmonics of fundamental
frequency with
Q=n where n - the integers. With whole and half integral Q are
excited parametric resonances. The first parametric resonance begins,
when the frequency of the disturbances/perturbations doubly higher
than frequency of transverse vibrations (Q=1/2). Remaining parametric
resonances are excited with Q=n, n+l1/2; n2l. Value Q is selected
between two forbidden values [119, 120):

Q=~n=114.

Page 2585.

By selection Q is determined phase change of transverse vibrations in
one period of the focusing structure

pe2,
where M - number of periods of the focusing structure at the orbit
circumference. With the essential space charge of beam the
frequencies of the incoherent of particles and oscillations of beam
as vhole diverge. The transverse sizes/dimensions of beam in the

annular chamber of the synchrotron is considerably smaller than the

transverse sizes/dimensions of chamber/camera; therefore phase change
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of coherent oscillations it remains close to u,. For the incoherent
oscillations phase change will be mixed to the value, determined in
the smooth approximation/approach by relationship/ratio (3.39). As a
result of the smallness of the permissible frequency switch of
incoherent oscillations the Coulomb parameter of beam is also low.
With h<<l for the incoherent oscillations we have

u=us(l —nh).
Since each of the frequencies must not coincide with any resonance
value/significance, this sets limitation on difference in both the
frequencies

WQ <y,

or

-

M L
Let us lead entire permissible frequency range for the displacement,
connected with the space charge. Then the maximum value/significance

of the Coulomb parameter is equal
huare = i -

But, on the other hand, from expression (3.36) it follows

o 2. .20yt
Tuake = To ﬁ\"ﬂ,‘ nflyake-

In the circular accelerator, according to expression (2.106),

feM
L Al

wvhere L=MS - length of equilibrium orbit. Hence

Q=

22
,nkc= n?L\ »nlo-

Let us note that a maximally possible current of the particles
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injected into the circular accelerator is directly proportional to
the transverse phase volume of beam, while in the linear accelerator
maximum current decreases with an increase in the phase volume. This
difference is connected with the different nature of the superimposed
limitations: in the circular accelerators the limitation is
superimposed on the frequency switch of transverse vibrations, and in

the linear accelerators - to the transverse sizes/dimensions of beam.
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I1f the phase volume of the injected beam is lower than the
capacity of annular chamber, then it is possible to increase beam
current, utilizing multiple injection [121]. In the principle of
increasing the current of the accelerated beam it is possible until
the transverse phase volume of beam proves to be equal to the
capacity of chamber/camera according to each degree of freedom. In
this case attains the limiting value of the peak current

Iapea = 22XV, . (3.136)
Expression (3.136) is inconvenient for the estimations, since in the
circular accelerators of transmission ability depends on energy of
particles. If we want to compare the limiting values of current with
different energies of injection, then into formula (3.136) one should
introduce the value of the acceptance of annular chamber, since in
the cyclic accelerators the acceptance on energy of particles does

not depend. Utilizing relationship/ratio (2.127), we will obtain

ovea = 257> Al (3.137)
With the aid of formula (3.137) it is possible to rate/estimate the
current which must be had at the output of the injector of the

strong-focusing proton synchrotron. Between the linear
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accelerator-injector and the circular accelerator is
established/installed high-frequency device/equipment debuncher),
that works in the frequency of accelerating field of injector. Action
of debuncher conversely to the action of buncher. Pebuncher decreases
the scatter of particles on the longitudinal impulses/momenta/pulses
and smooths modulation of current density along the longitudinal axis
of bundle. After debuncher the current of injection is close to
constant, equal average current in the linear accelerator. The
average/mean current of linear accelerator proves to be then peak
current in the circular accelerator (if in the latter is not
conducted preliminary bunching of beam in annular chamber). Therefore
formula (3.137) gives estimation for the average/méan current of
injector. It is necessary to consider that the part of the current of
injection (to 500/0) caﬁ be lost because the scatter of particles on
the longitudinal impulses/momenta/pulses after debuncher exceeds the
boundaries, adjusted by capture region. In connection with this the
average/mean current of linear accelerator must be
approximately/exemplarily two times of more than the value,
determined by relationship/ratio (3.137),

lep. anm = :tﬁz'ys Al. (3.138)

Let us determine on the basis of formula (3.137) a maximally
possible number of particles, accelerated in one cycle of

acceleration by the strong-focusing proton synchrotron, ...
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The average/mean current of particles in the annular chamber

lp = 230,
where N - number of particles in the chambef/camera. As it will be
shown below [see expression (4.58)], with the complete filling of
phase stability region average/mean beam current is connected with

the peak current of cluster with the equality

‘T.Jl
1 .

Ip =
Synchronous phase is counted off from the moment/torque when field
reaches maximum. From the latter/last two relationships/ratios it

follows
L

4 Y]
N Maxc = ‘;ﬁr’ Iupe1 .

After substituting the limiting value of'peak current (3.137), and

taking into account expression (3.22), we will obtain

N are = ig:_l_ B2y3. (3.159)
Value
o2
o= 4aegmyc?

this is a "classical radius" of the proton: r, = 1,54-10716 oy,

Energy of injection in strong-focusing proton synchrotron to the
exit energy 60-70 GeV [122] is equal to W,=100 MeV; orbit

circumference L=1.48 km; synchronous phase ¢, = 60; the acceptance of

accelerator A=2.5 cmemrad, which corresponds to the amplitude of free
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oscillations a=3 cm (sizes/dimensions of chamber/camera 20x12 cm).
Substituting the appropriate values into formula (3.138), we obtain
feruns x 130 MA. It is assumed that half of this current will be seized
into acceleration mode. Maximum peak current of clusters in annular
chamber /ge; * 9 mA, A maximum number of protons in one cycle of

acceleration is equal, according to (3.139), N T2-10%

Linear accelerator-injectors for the strong-focusing proton
synchrotrons have, as a rule, wavelength of accelerating field
A=1.5-2 m. The comparison of the current of injection, which ensures
complete filling of annular chamber, with the maximum value of
average/mean beam current in the short-wave linear accelerator,
obtained above, shows that a maximally possible current of linear
accelerator is found at best on the limit of necessary. Thus, at
present precisely injection limits a maximum number of particles in

the cycle of proton synchrotron.

§ 3.8. Space-charge effect on the beam focusing in the longitudinal

magnetic field.

Let us examine beam focusing with the high phase current density
in the longitudinal magnetic field. For the beams with zero phase
volume a similar task repeatedly was set forth in the literature [63,

64, 85, 123-125]. Let us examine below beams whose phase volume in
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the general case is different from zero.
Page 258.

For reasons, given in § 3.1, we will consider beam in the linear
accelerator continuous. The current of steady beam corresponds to the
peak current of clusters. Further, let us suppose that the proper
field of beam is formed only by the accelerated particles. The
calculation procedure remains the same, as in the case of the
strong-focusing fields; however, calculation is simplified, since for
the equations of motion of particles in the stationary longitudinal
magnetic field it is easy to indicate the first integrals, without
resorting to any supplementary assumptions. In particular, in
longitudinal magnetic field one of constants of motion - Hamiltonian

of particle.

The components of the proper field of beam are obtained above
and are determined by expressions (2.45). Let us substitute the
components of proper field in vector equation (2.5). Instead of
equations (2.295) we will obtain the equations of motion, which

consider the space charge of the beam

i dv | Lop, e L.

g =20 g g QX — G 140
Ry _ g dx_ dgn e U 140
T AL G T g eY T E Ay

In equations (3.140) function U(x, y, 2z) - the potential of proper




T e e ]

e e e e s

e e A s

DOC = 82105213 PAGE 70

field. Frequencies , and ¢ are determined respectively by
equalities (2.294), (2.293). Let into the focusing channel enter the
beam of round cross section. In view of the axial symmetry of all
applied fields the beam and subsequently will remain axisymmetric. In
this case it is assumed that also the four-dimensional phase volume
of beam possesses axial symmetry. The potential of proper field
depends in the transverse plane only on a radius - vector r. After
passing in equations (3.140) to the polar coordinates, in exchange

for (2.296) we will obtain

d2r Tdy o E a1 g e dl
a =T T R m (3.141
dy o dr o4 dy B
i U TR TRT

Into second equation (3.141) the potential of the proper field of
beam does not enter. Consequently, constant of motion (2.297) is
retained, so that as before the angular rate of rotation of particles
relative to the axis of accelerator is determined by the equality
= —ap + <5 . (3.142)
The substitution of angular velocity (3.142) into first equation
(3.141) gives

%ng=,_£:g+_m_:§?.%=o. (3.143)

Page 259,

Parameter o' is assigned by expression (2.301)

| )
o=y -1

and it is the frequency of a radius - the vector of the particle,
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which did not have initial rotation, in the beam of zero intensity.
Let us examine the matched beams, which retain a constant radius of
section along the axis of channel. Then the potential of the proper
field of beam - function only from a radius - vector r. After
multiplying equation (3.143) on dr/dt and after integrating, we will
obtain integral of motion, analogous (2.306):
1=i%%;ﬂ_%;_-“ﬂﬁ-_£%WL\m. EUER
The sum of first two terms in the right side of expression (3.144)
is, as shown in § 2.9, the square of the disordered component of
complete linear velocity in the plane, perpendicular to the axis of

the bundle:

Lo
vl =t -

- re

Therefore :onstant of motion (3.144) can be. represented in the form

2 *

Lir, vi)=0v} —ar - Uiry. 13.143)

may
Let us restrict the circle of the stationary distributions in

question by the case

n(r, v )=Ff(. (3.146)
Let us note that constant of motion I(r.v.,) - the linear combination
1 of two independent integrals '
‘ 1=2(H— o M). (3.147)

i where H - Hamiltonian of particle, and M - generalized moment of
momentum (2.297). Actually/really, equation (3.140) it is possible to
lead to the canonical form, if we introduce the generalized momenta,

canonical-conjugated/combined with the Cartesian coordinates

|
|
3
|
i
%
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c=x—wyi Py=y—orx
Hamiltonian, as it is possible directly to be.convinced, takes the
form

H =% [Py wrur® B ) T - Lt

and constant of motion (2.297)

M=xP,—yP,
regarding is the generalized moment of momentum ([21]

M=|r, P|.
Page 260.

It is easy to show that linear combination (3.147) gives expression
(3.144). Thus, in the case (3.146) phase density is actually the

function of two independent constants of motion H and M.

Further, let us suppose that the stationary distribution of
phase density corresponds to the microcanonical
nir. v )=nbll(r, v )—1).
Density distribution of space charge according to the beam section

Q(r)=2neny \ 8[1(r. vy)—loJv, duy. (3.148)
b
This distribution must satisfy the integral condition

R(‘
I = 2xv, \ @(r)rdr=const. (3.149)
0

Let us substitute into integral (3.148) function (3.145) and will
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produce integration by the replacement of variable/alternating

analogously with § 3.2. Taking into account (3.149) we will obtain

/
Q”)':n“j‘p.g = const.
Function U(r) - the internal potential of the evenly charged/loaded
circular cylinder
a0 dl _l_
Ty T T ¢

Under boundary conditions U(0)=du/dr(0)=0 we have

I ;‘,\"

U (r) == 4"!0"] ‘\ -ﬁc-) )

Constant of motion (3.144) can be now represented in the form

dr 2 . .Mz ® 2 __

dr +7—+w,r —Io.
Here

. 23/

where I, - standard strength of current (3.22). According to the
condition, all particles in the beam have one and the same
value/significance of constant of motion I=I,. The peripheries of
beam r=R, reach the particles, which did nét possess initial
rotation relative to the axis of accelerator. Phase trajectory of
these particles on plane r, t

r* — wirt = olRE. (3.151)

Page 261.

Trajectory (3.151) covers the representative points of all particles

with M40 (see Fig. 2.26). According to expression (3.151), o, - the

frequency of a radius - the vector of the particle for which M=0, in
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the beam with the nonzero intensity. As shown in § 2.9, ellipse

(3.151) coincides with the projection of four-dimensional phase

volume on plane x, x. The transverse phase volume of beam, regarding

(2.2), is equal to projected area on plane . ). Thus, for the

mmimas = ootk e 0

matched beam with a radius of R we have
Vo= \m.p:
A radius of matched beam with the same phase v>lume and zero

intensity is determined by the equality

V= ' ywlRY
Hence ’
R.=R:) :_, Cv 2,
I1f we introduce into equality (3.152) of expression for « from

formula (3.150) and to solve equation relative to R;. then we will

obtain

ctf ot

1 —_— B i
R: = PN ‘ R: Wy I

or

A AL A Al s St o3 e 4 b e . e M A i, 5 e A s, e e 5, =

Re=R}Y h+) I-ht. (3.153)

The dimensionless combination of values

b=
is the Coulomb parameter of beam in the longitudinal magnetic field.
According to expressions (3.152), (3.153),
o, =0 (| T+h—h). (3.154)
Expressions for a radius of matched beam and frequency of a

radius - the vector of particle formally coincide with the analogous
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relationships/ratios, obtained above in the smooth
approximation/approach for the beam in the strong-focusing channel.
The degenerate and canonical distributions also lead to with respect
to the coinciding formulas. Hence it follows that ratios R. R! and

w. w. in the longitudinal magnetic field also noncritically depend on

the form of the stationary distribution of phase density.

The ma#imum permissible phase volume of beam with the nonzero
intensity is connected with the channel capacity (2.316) with the
equality, which directly escape/ensues from relationship/ratio
(3.154)

Vin =V (V T+h2—h).

Page 262.

Maximally possible peak beam current in the channel with the

longitudinal magnetic field

l-axcz Inpen [ I - l‘;‘f)’] .

where :
lupen = %‘ o)}’ﬂy’ loV,..

After substituting expression (2.316), we will obtain

’ (‘)’ 1} ]
Tupes =20 {25 (£ ) By, (3.153)
If we for the comparison rewrite formula for the limiting current in
strong-focusing channel (3.1322) in the form

‘f‘"gu Qr :
lnm1=2n’(l+_) <{_)'pyalo' (3156)
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then it is possible to see that both expressions are close, only in
formula (3.156) instead of frequency o' stands square root from the
product of the medium frequency of transverse vibrations for the
minimum instantaneous frequency. Let us compare formulas (3.155) and
(3.156) at the identical values of a/X and Bv°. Let us accept,
according to expression (2.320),

o=+ Q2
where @ - initial frequency of small longitudinal vibrations. For the
linear proton accelerator I1-100 [14]

wo=1,03 v$=0,50; S =2Bk: (%\:=8.73.|o-3.
Hence

Ei%;31==&340ﬂ; &i§{f==L4JC”.
Thus, in the longitudinai nmagnetic field the limiting current of beam
proves to be approximately/exemplarily to 30o/0 higher than in the
strong-focusing channel. This is connected with the low
value/significance of minimum instantaneous frequency in the channel
of quadrupole lenses, i.e., with the presence relative to deep
modulation of envelope, which makes it necessary to decrease the mean
radius of beam in comparison with the assigned aperture. Thus, in the

example

0

—~=8,3-10"% ____m:.,," =4,0-10"-
w w . .

in question. In the channel with the longitudinal magnetic field

wr
—-=6,6-10",

The mean radius of beam in the strong-focusing channel is lower than




—
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the radius of beam in the channel with the longitudinal magnetic

field, but maximum size proves to be more.

v~ PRSP vy oty
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Chapter 4.

Longitudinal vibrations of particles in beams with the high density

of space charge.

4.1. Potential distribution of self-congruent field along the

longitudinal axis of cluster.

During the analysis of transverse vibrations of particles in the
beams with the high density of space charge we disregarded/neglected
the dependence of the transverse components of the proper field of.
beam on the longitudinal coordinate. This made it possible to avoid
the difficulties, connected with the examination of complete task in
the six-dimensional phase space, and to bring together the latter to
the determination of the self-consistent solutions for the proper
field of beam and particle trajectories taking into account the
distribution of phase density in the four-dimensional space of
transverse coordinates and impulses/momenta/pulses. However, it is
important to examine the longitudinal vibrations of particles in the

intense beams, since previously it cannot be indicated, what effect

more greatly limits the limiting current of beam - transverse or
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longitudinal Coulomb pushing apart. As it will be shown,
response/answer to this question depends on the identification of the

parameters of accelerator.

The longitudinal forces of electrostatic pushing apart
susceptibly/critically depend on the length of clusters and,
therefore, they must be sensitive to the law of density distribution
of space charge along the longitudinal axis of cluster. The correct
formulation of the problem requires the determination of the
self-consistent potential distribution within the cluster. To avoid
the formulation of the problem is fully possible only in such a case,
when we disregard/neglect the dependence of the longitudinal

component of the proper field of beam on the transverse coordinates.

In § 3.1 based on the example of the general ellipsoid it was
shown that the longitudinal component of the proper field of space
charge very weakly depends on the relation of the transverse
semi-axes (see Fig. 3.1). The longitudinal component of field has the
greatest value/significance with the circular cross section of

cluster.

Page 264.

Further as in Chapter 1, let us suppose that the amplitude of the
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longitudinal component of accelerating field does not depend on
transverse coordinates and is only the function of the longitudinal
coordinate

E=E (.
Since the longitudinal component of proper field, by hypothesis, on
transverse coordinates does not depend, density distribution of
charge along the longitudinal axis must depend only on the
longitudinal coordinate

e=e(2).
Thus, in each cross éection of beam the density of space charge is
constant, which is in accordance with the assumption about the
stationary microcanonical distribution of phase density in the
four-dimensional phase space of transverse coordinates and

impulses/momenta/pulses. The assumptions indicated in principle

-

simplify the task about the phase stability and they make it possikle

to bring together it to the two-dimensional on the phase plane of

longitudinal coordinates and impulses/momenta/pulses.

Let us introduce also the following assumptions, which no longer

carry fundamental character, but the simplifying calculations:

1. The effect of the metallic walls of channel on the proper

field of beam is negligibly small.




r
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2. Bunches of particles are well formed, and all particles, not
seized into acceleration mode, fell out from beam. Let us note that
the task about the particles out of the separatrix is substantially
nonlinear. The deletion of such particles leads to the overestimation

of the effect of longitudinal pushing apart.

3. Particles are accelerated in field of traveling wave. For the

discrete/digital accelerating structures such field is the equivalent

traveling wave.

Let ¢. - synchronous phase in the absence of longitudinal Coulomb
pushing apart; 2z - longitudinal coordinate of synchronous particle
in the assigned applied fields in the beam of zero intensity. In
other words, 2z - moving cocrdinate of point at the front of the

traveling wave in which would be located synchronous particle, if the

forces of Coulomb pushing apart were absent. Let us introduce the
moving_éoordinate system, rigidly connected with the front of the
traveling wave. Longitudinal coordinate in this system we will count
off from point

{=2z—2,

Page 26%.

Equation of motion for the arbitrary particle in the cluster takes

the form

o r——

- - — - o ot -
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- =eEcosq+eEx (D), (4.1
where :
¢=(_ue/t— \ dz
~ o Uy J/

there is a phase of the traveling wave in which is located the
particle; E - amplitude of the traveling wave; £, - longitudinal
component of the proper field of cluster. The current velocity of
synchronous particle regarding is equal at each moment of the time of
the velocity of the motion of the front of the traveling wave.
Therefore an increase in energy of synchronous particle per unit of

length does not depend on the forces of the Coulomb pushing apart:

dW

—* =eEcosg,. (4.2,
Let 2
g5 - new value/significance of synchronous phase, shifted relatively
A
¢. due to the action of Coulomb forces; : - distance from the
synchronous particle to the instantaneous value of coordinate :,. Then

eEcosg, =eEcosq; 2eE. ().

Let us introduce into the examination
canonical-conjugated/combined variable/alternating, used in €hapter
1: phase of particle + (1.47), calculated off the synchronous phase
in the field without the space charge, and energy difference of
synchronous and nonsynchronous particles (1.48)

$=0—¢
pe=W,—W,

After deducting equation (4.1) from equation (4.2), we obtain

d:: =eE [cos @y — 03 (§ — o)l —eEx (2. (4.3




o |

DOC = 82105213 PAGE SP3

Second equation, which describes longitudinal vibrations, (1.51) -
purely kinematic. The form of this equation upon consideration of the

forces of Coulomb pushing apart is not changed. Let us pass in

equation (4.3) to independent by the variable/alternating t. As a {

result we will obtain the following system di first-order equations

T NI o P
U

apy
al

=et, E [cos . —cosnf — v ji—ev Eq (2
Equations (4.4) are written in the laboratory coordinate system.

Therefore, according to expression (2.45),

Lk w o (4.5

—\-" Ve
where U - potential of the proper field of cluster in the laboratory

system. Since we disregarded/neglectéd the dependence of the ~
longitudinal component of the proper field of cluster on the
transverse coordinates, we can replace partial derivative in equal:‘.y

(4.5) of the total derivative
Page 266.

Differentials from the phase of particle and from the longitudinal

coordinate are connected with the relationship/ratio

Hence

Ew($) = = - o (¥):

Bquations (4.4) can be now represented in canonical form
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dy w )
Tz Y2pyu, Pe: .
ip, ‘ e @ (4.9
- = et £ (oS ¢, — COS (§ — G)] RS (.
The Hamiltonian of particle takes the form
Hy, pe. 1) =—2Y_,—(:.v.—pf;«e:-,1:’ [sin (¢ — ¢ —
Sy cos gl =5 L), (+.7)

Expression (4.7) is the generalization of Hamiltonian (1.53) to the
case when it is not possible to disregard the effect of the proper

field of beam to the longitudinal vibrations of particles.

Let us further examine only conservative approximation/approach,
by proposing as in ¢hapter 1 that Hamiltonian (4.7) -~ constant of

motion. For simplification in further recordings it is convenient to

introduce instead of electric potential ( ) the new potential
function
L _ fcos@,—sin(¢y—q,) . e 7w Ny
D)= SR G, Ty Lo L ().

Taking into account equality (1.70) Hamiltonian (4.7) can be then
converted as follows

H. (. pe) = e Py + 2220 (2 V' 0 ().

Equation of phase trajectory on plane y, p,. corresponding to the given
value of H=const,

= v pov, e [ @Yy e
Pe =+ V 2y p,v, w[pﬂ@:H ouw].

Let

H.- value of Hamiltonian, which corresponds to separatrix. With the
A

designation : |
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vHe @, (4.8)

Psusldi

the equation of separatrix takes the form

Poo§) =T} 2y puvy = } De—D(¥). (4.9)

w

Page 267.

In the equation of separatrix (4.9) are unknown function @ y) and
number .. which are subject to determination with the assigned peak
current of cluster. If @(y) and &. will be determined, then by this

very we will completely calculate phase stability region. The

coordinate of a singular point of the type of center on the phase

plane corresponds to the minimum of potential function [23, 24]
Phase of synchronous particle in the intense beam

¢ =Fs — Yo
A singular point of the type of saddle corresponds to the maximum <f
the potential function

a0 . Ll
W(‘Pc)=0. o ($e) < 0. (4.11)

Potential function and separatrix is schematically shown in Fig. 4.1.

V- Gk A AT

In contrast to Fig. 1.5 singular point of the type of center by Figq.
4.1 is displaced relative to the origin of coordinates. The
boundaries of the region of prase stability .. ¢. (see Fig. 4.1)
satisfy condition p,.=0. whence it follows

D(§)=D; V(y)=D.. (4.12)

|
i
L
|
i
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By equations (4.12) is determined parameter . and the left boundary

of the region of phase stability vy.

In particular, if Coulomb forces are absent, then equations

(4.10), (4.11), (4.12) lead to the results, obtained in § 1.2. In the

beam of zero intensity U($)=0 and D= dy(p. where
P COs Gy -—3IN (Y =G ) A .
Dy () = — . (4131
Hence

Po=0; Y= —2¢s Tk T ¢4
O =0 ( —~2¢,) = [ —2¢,ctgq,.
In this case the equation of separatrix (4.9) coincides with equation

(1.57).

Let n(¢,py) - function of the distribution of phase density on plane

¥, Py




DOC = 82105213 PAGE SO 7

Page 268.

During any stationary distribution

n (¥, py) =[(H)
the clusters do not fluctuate, since the lines of equal density
coincide with the phase trajectories. According to the conditibn, out
of the separatrix the representative points are absent. Following
work [126], let us accept simple assumption relative to the law of
the dist;ibution of the representative points within the separatrix,
namely let us assume that within the separatrix the phase density is
constant. For the phase trajectories, arranged/located within the

separatrix, H<H, for the trajectories, which pass out of the
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separatrix, H>H. Hence

n=n, ﬂb;l H<He;

(4.14
n=20 n%u H~ H.. )

Key: (1). with.

Function (4.14) describes the two-dimensional distribution of phase
density, analogous to singular distribution (3.41) in the

four-dimensional space.

Let us compose difference H(y, p,)—H. According to expressions

(408), (409)'
H (%, po) = He = == (P4 — Pie (V)] (4.13)

The density of space charge changes along the longitudinal axis of

cluster according to the law
<+-co

Q(‘P)=¢S n (¥, py) dpy.
Integrand exists n=n, when pi<pi and n=0 when p,>pi. Thus,
+Pee
e(¥)=eny | dpy=2enypyc (¥). (4.16)

-p v

The law of density distribution of charge along the longitudinal axis
of cluster repeats the course of separatrix. If I - peak beam current
and R. - the mean radius of cluster, then

/
Q‘“"‘-n_u,T;" 4.17)

After assuming in expression (4.16) ¥=y, and after equating to its

expression (4.17), we will obtain
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{
Np = ———ee . 4.18
* 7 2a0,REpgc (o) @18

Taking into account formulas (4.9), (4.18) equality (4.16) is reduced

=t l/‘%—®W> (4.19)
QWV‘Mﬂg De—D (¥

to the form

Page 269.

By formula (4.19) the density of space charge ot} is expressed
“ as the potential of the proper field of beam. This, in the principle,

it makes it possible to compose equation for the potential of

! self-congruent field. For the calculations it is more convenient
instead of differential Poisson's equation to use the

general/common/total integral form of the solution

! ° "Li‘i‘ .)
- £ (4.24h
U= 4a¢, \ R

v

where V - volume, occupied with space charge; R - radius-vector in
the three~-dimensional space. Substituting in equality (4.20) for the
potential of proper field its exp}ession through function & (y) and
instead of p - expression (4.19), we will obtain integral equation
for function o (y). Since the amplitude of accelerating field 3does not
depend on transverse coordinates, in the absence of space charge to
all particles independent of their misalignment corresponds one and
; the same separatrix. All particles of cluster are arranged/located

within the circular cylinder, limited by flat/plane ends/faces. The

length of cylinder is determined by phase stability region overall
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for all particles. As it will be shown, capture region on the phases
in the presence of Coulomb pushing apart is reduced. The longitudinal
component of the field of the space charge, limited by the cylinder
of the finite length 1, is maximum on the axis and somewhat weakens
to the periphery of cylinder (Fig. 4.2). Therefore phase stability
region must be reduced for the axial particles more than for the
peripheral ones. However, since we disregarded/neglected the
dependence of the longitudinal component of the proper field of
cluster on the transverse coordinates, one should consider that and
in the presence of space charge the cluster is limited by circular

flat-topped cylinder.

Subsequently let us examine the particles, which lie on the axis
of bundle. Let us calculate potential on the axis of a cylindrical
cluster, radius R.. in the coordinate system, relative to which the

cluster rests (Ts-system).




DOC = 82105213 PAGE =% 5 //

Page 270.

Upon transfer from the laboratory coordinate system, rigidly
connected with the accelerator, to%ﬁs—system longitudinal
sizes/dimensions grow/rise ¥y onée, so that in the same sense
increases each element of volume and falls the density of the space

charge

. i .
0 (La) = 7 e) (4.21)

Let

te» & = coordinate of beginning and end/lead of the cluster in the
A

laboratory coordinate system. Coordinates of beginning and end/lead
of the cluster in-ég-system

Sen =YLei  Cun=yix.

Purther, . ¢, iz - coordinate of the current point of integration in

the cylindrical coordinate system, which accompanies cluster (Fig.

4.3). Distance from the current point of integration to the point on

the axis with longitudinal coordinate I, is equal
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Ra=} - {Sa—Su)*.

Potential on the axis at point w is determined by the integral

s Bo2n drd
_— e (o) rdrd g d2
L u (sll) = \ \ Q “"gﬂ i'u;,-;?j_—.fl‘:“
ey ey b r2 =y — gt
en

In each elementary disk (see Fig. 4.3) the density of space charge is
distributed evenly. Therefore internal integrals can be elementarily

calculated

Uy (su) = ‘.j_l'o_ \ og (Za) “-Rf - (;u—gu)i— } (Sa— Eu)z} diu.

i

In the laboratory coordinate system we have

U Q) =yUa (Sw-
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Fig. 4.3.

Page 271.

By the replacement of the variable/alternatinc of the integration

- -
s = *u

v
taking into account (4.21) we will obtain

.
AN

U=t o) [V LR comem T e
In the laboratory system the difference longitudinal coordinate of
particle §{ and the phase of particle ¥ are connected with the
relationship/ratio
=2
Introducing the new replacement of the variable/alternating of the

integration

we will finally have
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1 oy -
U (‘r) = 2:;\ “.m\ \ Q (”.) ~
¥

/ LR (y —urs—| (‘\L‘_—L ay’ J dit, 14.22

<[y

Let us pass on the left side of equality (4.22) of the potential of

Yoo

the proper field of cluster to introduced above dimensionless
potential function @y,

Ui =205 2 g — )
and let us replace g(y) with its expression (4.19). As a result we
will obtain integral equation for the potential function, which

corresponds to self-congruent field,

t(‘
D) =Dp(§) —he \ Ry a) ] D —Du) du, 423

s
K

Function o@,(y) is assigned; it corresponds to the beam of zero
intensity and is determined by expression (4.13). Kernel of integral

equation

R(¥, a)= /( “;f. >2+(¢-—a)'= -} (F—w (4.24)

Page 272.

Constant parameter Ah; is introduced as follows
he = (0= ® (w01, (4.35)

the characteristic strength of current /, depending onlv on the

parameters of the accelerator

[y =t (%)’ (i{.)’ Blo. (4.26)
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At the solution of integral equation (4.23) parameter #H: is
conveniently been assigned. For each value/significance h, from
equation (4.23) and supplementary conditions (4.11), (4.12) are
determined function W (y) and values ¥. V. @ also depending on A,.
After this it is possible to find the ratio of the peak current of
cluster I to the characteristic value of current /. corresponding to
given h,. The method of the numerical solution of integral equation

(4.23) with boundary conditions (4.11), (4.12) is described in work
(127].

As it will be shown, parameter /¢ is approximately proportional
to phase current density on plane ¥, py. i.e., it is proportional to
the ratio of complete peak beam current to the area, included by
separatfix. Therefore by analogy with the Coulomb parameter of beam,

introduced in €hapter 3, value A, can be named the longitudinal

Coulomb parameter of beam.

§ 4.2. Stability of the longitudinal vibrations of particles in the

intense beams.

Let us first of all examine small longitudinal vibrations in the
intense beams. Let us introduce potential function o (y) into the

equations of motion (4.6), we will obtain

e o

e — < Y~ s e ———
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Hence it is possible to obtain second order equation for the phase of

particle ¢. In the conservative approximation/approach we have

-+ Q’ (\p) (4.27)
where
Q=y~V

there is relativistic frequency of small longitudinal vibrations in
the beam of zero intensity. Equation (4.27) is nonlinear. Assuming

that the phase of particle little differs from synchronous phase, let

us expand function %%—in series/row about point y=y, and we will be

restricted to the linear terms of the expansion

A ()= (o) G (o) (B — )=

Page 273.

According to expression (4.10), the constant of series/row is equal
to zero. The linearized equation takes the form
T+ 90 S (%) (4 — %) =0. (4.28)
From equation (4.28) it follow; that the oscillations of phase occur
around the new state of equilibrium y=y» with a frequency of the
small of
Qura=2 Y L2 (o). (429

As it is easy to be convinced, when j,=0 we have

v

S0
7&%40)=1.
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and Quya=9. The second derivative of potential function can be
determined by dual differentiation of equality (4.23). Kernel of
integral equation R(¢. ) on diagonal v =a has a derivative

discontinuity. Actually/really, from expression (4.24) follows

9R _ y—e Nt
J‘F - /'. "“,RC' ::;V‘“ o 2 ' ‘{—” :
/ — ) —p—a
N YUs - M
thus, (
. i
f \ _: —r — | MpH (<l
| p//ﬁﬁi> —(p—a
i-_-_— ) N\ Yt -
e
/ wRe N +(y—a
S AN

Key: (1). with.
Plotted function Riy.a) is given in Fig. 4.4.

From Fig. 4.4 it is evident that the kernel of integral equation
has pulse character. This is explained by the fact that the Coulomb
forces rapidly decrease with the distance, so that a basic effect on
the given particle have only the adjacent particles. With the
decrease of parameter %Ef the peak of nucleus decreases on the

height/altitude and it becomes narrower. In the limit, when -E@L—*O.

the nucleus vanishes evenly to relatively a.
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Fig. 4.4.

Page 274.

During the differentiation of integral (4.23) with respect to the
parameter the derivatives must be calculated separately in sections

t«¢ and yy.. The second derivative of the nucleus

R 7 wR, \’I'/ wR. N2 21
L RNETS ) LK Yus ~ —¢—a) .]

gaps does not have. Differentiating twice equality (4.23) and

32

(4.30)

substituting v=1, we obtain
o (¥ = 22 (9 — 24, VB—® (%) (1 = M).  (4.3D)

Value M is determined by the integral

$e —
=L (Yo% R d 4.32
M 2'5‘/m w(‘to'“) Q. ( )
x

Expression (4.31) can be simplified, if to use the determination of

longitudinal Coulomb parameter (4.25)

%—f(%);’;—‘:}(%)—ﬁ(l —M). (4.33)
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by formulas (4.29), (4.33) is determined the dependence of the
frequency of small longitudinal vibrations on the peak current of

cluster.

For the numerical solution of integral equation (4.23) it is
necessary to previously assign two values: by synchronous phase in

the beam of zero intensity g¢. of that being determining potential

oRe

Yl
of integral equation. As it was established in § 3.7, the ratio of

function ®, (y). and by parameter , by that being determining kernel
the aperture of the strong-focusing accelerator to value B\ during
the optimum identification of the parameters of the focusing system
virtually is uniquely determined by the assigned frequency of
accelerating field, by energy of injection and by maximum permissible
induction in the poles of magnetic quadrupole lenses. With A=2 m and
W,=0.7 MeV the maximum amplitude of free transverse vibrations can be
accepted equal to 0.9 cm. Assuming/setting the mean radius of beam by
equal toR. = 0,5 cxfor the initial part of the accelerator we will
obtain %‘-gf=0.4. Let us accept, further, cosq, =08 Are given below
the basic results of the numerical solution of integral equation

(4.23) at these values of the parameters.

Fig. 4.5 gives the dependence of the frequency of small
longitudinal vibrations on Coulomb parameter h;. Frequency is

calculated according to formulas (4.31), (4.29) after the
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determination of potential function ® () for the series/row of values

h¢. Frequency of small monotonically decreases with an increase in the

Coulomb parameter and within the limit it vanishes when 4, — .

The behavior of potential function ® (y) at different values

is shown in Fig. 4.6.
Page 275.

Level ., with increase Ay increases, but this does not have vital
importance, since the course of separatrix does not depend on
absolute level function ¢ (y). In the absence of Coulomb pushing apart
the minimum of potential function, which corresponds to synchronous
phase, lies/rests in the beginning of the coordinates: y. . With an
increase in the Coulomb parameter the minimum weakly is displaced to
the side of negative values ¢. depth and width of potential well
decrease. In this case the decrease of potential well depth occurs
considerably more rapid than the decrease of its width, and in the
limit, when hy—, the depth of pit vanishes, and width, as will be
evident below,‘it remains final. At the infinite value/significance
of Coulomb parameter h, potential function must have straight/direct
horizontal section and a singular point of the type of center on the

plane will disappear.
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With a change in the form of potential function is changed the
course of separatrix. For the characteristic of the behavior of
stability region at the high values of the Coulomb parameter it is
expedient to introduce any auxiliary parameter, which remains final
when s, - x» From formula (4.29) it follows that the process of phase
stability is retained, until the values of the second derivative of

potential function at the point of the minimum lie/rest in the limits

1>f—$(¢,}>0.
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Space-charge effect of beam on the process of phase stability is

convenient to characterize with value

k=1-23 (b,

of that of unambiguously connected with the Coulomb parameter. In the

absence of longitudinal pushing apart we have k=0, and the infinite
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value/significance of the Coulomb parameter corresponds then k=1. For
the frequency of small we will obtain the expression

Qusa=Q Y T—E.
The dependence of the auxiliary parameter k on the longitudinal

Coulomb parameter of beam 4y is given in Fig. 4.7.

The function
F=V2(0.—0(y)| (4.39)

does not depend on relation SQ'and, therefore, is determined

w

separatrix for any frequencies of small phase oscillations, which

occur when hAy=0. On plane ¢ 5531 the separatrix, according to
expressions (1.50), (4.9), will take the form

ge (W) =y & g (y), |
where g. - relative difference in impulses/momenta/pulses (1.58).
Fig. 4.8 gives plotted functions # (y) at the different values of
parametef k, while in Fig. 4.9 - the dependence of stability limits
Yoo Puo Fume, Of the abscissa of center ¢, and also relation Q,,,/Q on
k. These graphs/curves make it possible to trace how is deformed the

stability region of longitudinal vibrations with an increase in the

Coulomb parameter.
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With increase of k the stability region is reduced. Decrease occurs
in essence due to the decrease of the permissible variations of
particles on the impulses/momenta/pulses, moreover with k—>1 (i1, ~ xi
the permissible variations on the impulses/momenta/pulses vanishes.
The width of stability region with respect to the phase is decreased
relatively slowly. Thus, with an increase in the auxiliary parameter
k from zero from 0.86 (which corresponds to an increase in the
Coulomb parameter from zero to 4, = 15,2 the vertical spread/scope of
separatrix decreases five times, into the capture region on the
phases it is compressed approximately/exemplarily to 30o/o. From the
graphs/curves in Fig. 4.9 it follows that the stability region with

respect to the phases remains final with k=1.

Current in the cluster is distributed along the longitudinal




DOC = 82105213 PAGE $2.5

axis according to the law
1 () = aR:v,Q (9). {4.35)
Clusters follow each other with the period 27. Average/mean beam

current is equal to
v, \
lep= 5=\ 1($)d¥. 1.46)
R
After substituting into integral (4.36) of expression (4.35), (4.19),

we will obtain the following formula for the ratio of average/mean

beam current to the peak current of the cluster

lep _ 1 ( ) B~y dw (4,37
7 T 2a '
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Page 278.

For calculating interaction of beam with accelerating field it is
necessary to know the amplitudes of the fundamental harmonics of the

current of cluster in the form of Fourier series
i(¢)=lcp+lccosw+f,sin1p~;—...

Coefficients of the fundamental harmonics of the series/row

vC
le=— gl(\p)coswd\p
'n

=%5 ($) sin dy.
Yy

Utilizing expressions (4.35), (4.19), we will obtain the ratio of the

amplitude of the first cosinusoidal harmonic to the peak current

YO, —0 (%)

l "
£ —~— " cos P dy.
1 ’1'5 }/Qc—m(‘%) bat
3

For the first sinusoidal harmonic of Fourier series we have

/

A
I

SV% —® ¥

—t——— " sinyp dy.
,V%—M%)'ww
n
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In view of the fact that the extent of cluster along the axis of
phases y.—%¥.little is changed with an increase in the Coulomb
parameter, one should expect that the ratio cf average/mean beam
current to the peak weakly depends on 4,. The considerations indicated
occur also for the ratio of the amplitudes of the fundamental
harmonics to the peak beam current. Precise numerical calculations

confirm this fact. Fig. 4.10 gives the graphs/curves, which

~

.

characterize the dependence of ratios {%, 9. and 7 on the auxiliary
parameter k. From Fig. 4.10 it is evident that the coefficients of
Fourier-expansion of beam current approximately linearly depend on
parameter k, moreover dependence itself is weak. Good

approximations/approaches in entire range of change k in parameters

R, . . . .
¢”:mﬁ placed into the calculation give the following

approximations:

L —0.215 (1 — 0.25k);

I
L+ =0,381 (1 0.19); (4.38)
e =0.070(1—0,92%).
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Thus, the value of the integral

Y VE—ewT
A= X200 4y 4.39
5 } ®—D (%) ¥ ( )

K

connected with the average/mean beam current with the equality
[cp=l§‘._\l—. (440)

noncritically depends on k. With k=»1 function 2&@- in appropriate

interval ¥« evenly approaches unity, so that value A\ approaches

the limiting value of difference ¥“—V:
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Let us cxamine connection/communication of peak current with the
longitudinal Coulomb parameter of beam. Fig. 4.11 shows the
dependence of peak current and average/mean beam current on parameter

k. At the low values of parameter k it is as follows connected with

the peak current
I
k=0187—. (4.4
v

With an increase k tiis dependence differs from linear law. When
k—1(h, — ) Peak current approaches finite value. Actually/really,

according to expression (4.33),

I _ D54 — D" () "
/S Yy v R (4.42;

The numerator of the right side of this equality when # — x remains

the value of final.
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On the other hand, from formula (4.32) it follows that when h.,— <

¥

<

. I o2
IimM=M,= 3 ‘\‘ anBi (%o, a) da.
ox

After substituting function (4.30) and after producing integration,

we will obtain

M,=§[ Pe—% ¥x—¥o (4.43)
2 7 oR. 2 + R. -2 — :
\uﬁ) + ($e—1$,)3 ‘/(%’,f/ +{($x—¥)?

The limiting value M<1l, so that the denominator of expression (4.42)

in the limit does not become zero. With k=1 we have




DOC = 82105214 PAGE 53)’

Since V,remains close to zero (see Fig. 4.9), P/(¢)=! and

A 2
e = I ML (4.44)

Extrapolation of computed values of M to k=1 gives following limiting

value M, =0,74 Hence it follows that maximum peak current in cluster

Inpez = JSC-) 7;

Let us define the longitudinal phase volume of beam /, as the
area, occupied with the representative points of particles on the

plane of canonical-conjugated/combined variable/alternating V¥ P« &
l 'l
Ve =% S .\, d¢dp,.

In the case in question entire/all region, included by separatrix, is
filled with particles. The area of this region, according to

expression (4.9), is equal to

®e
Ve=2VBNA | YO —Ow)ay.
A

Let us multiply and let us divide the right side of equality (4.25)
on V,. Taking into account formula (4.39) we will obtain the following

expression for the longitudinal Coulomb parameter of the beam:

5 AQ. [/
h’ = V2p’y'/! al:c” V—. . (4'45)
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The ratio of complete peak beam current to its longitudinal phase
volume let us name/call phase current density on plane ¥ #P: €. Since |
A little differs from constant value in entire range of change #«
from 0 to =, the Coulomb parameter of beam, introduced by equality

(4.25), is approximately proportional to phase current density.

Page 281.

Thus, the obtained dependence betweeﬂ the sizes/dimensions of capture
region and Coulomb parameter he (or auxiliary parameter k) reflects
the depeﬁdence of these sizes/dimensions on the phase current density
of the injected beam. Passage to the limit A, —x — this is
transition to the infinitely high phase current density; in this case
the beam current, seized into acceleration mode, remains final, and

longitudinal phase volume vanishes.

Since the real beam, injected into the linear accelerator,
possesses nonzero phase volume, the maximum peak current of the
particles, seized into acceleration mode (4.44), can be in the
principle realized only with the infinite current of injection.

picture appears as follows. With an increase in the current of

injection the peak current of the seized particles monotonically
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increases. With the low currents of injection the peak current of the

seized particles increases approximately proportional to the injected
current. Subsequently an increase in the peak current of the seized
particles begins to lag behind an increase in the current of
injection and approaches the finite value with an infinite increase
in the injected current. In the extreme case into acceleration mode
are seized only the particles whose energy coincides with the energy
of synchronous particle. The average/mean current of the accelerated
beam also monotonically increases with an increase in the phase
current density of injection and within the limit it approaches the

finite quantity

A

hm lcp = 2:‘ “‘——_A1x_) .'*.

At values g¢,, ©Re

Yo, '
limiting mean beam current, determined by longitudinal pushing apart,

of those used in the numerical calculation,

it is possible to obtain from first equality (4.38); it is equal to
,09 = 0,61'-

In short-wave ionic strong-focusings accelrator the current of
the accelerated beam is limited not to longitudinal, but transverse
pushing apart. Let us examine proton accelerator with the standard
parameters: A=2m; B,=0.04; cosq. =08 Wy =27.10-  Por this accelerator
lo =650 ma, whence follows /mex =25 a. The maximum value/significance

of the peak current, determined by transverse pushing apart, for the
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accelerator with the same parameters was obtained in § 3.7 and proved
to be equal to /u,.. - 520 mA. With the decrease of peak current in
the cluster the longitudinal Coulomb parameter of beam rapidly falls.
If we assume I=600 mA, then from formula (4.41) follows k=0.16 (or

he = 0.0 The capture region of particles into acceleration mode is
decreased in this case on the phase only by 50/0, and on the relative
scatter of impulses/momenta/pulses on 140/0; the frequency of small
longitudinal vibrations falls on 80/0. One should recall that the
obtained numerical ratios relate to the idealized case when alil
particles, not seized into acceleration mode, are considered fallen
of the beam. The account of such particles can substantially raise
the theoretical value/significance of the limiting current,

determined by longitudinal pushing apart.

Page 282.

S 4.3. Dependence of the limiting current, determined by longitudinal

pushing apart, on the parameters of accelerator.

The solutions of integral equation (4.23) depend on three
parameters: h,.wufﬁ%-ln $ 4.2 are given the results of a precise
numerical solution of equation (4.23) for the case when the values of

uf,

two parameters ¢, and 7t are fixed/recorded. These solutions made
(J

it possible to explain the general character of the strains of
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potential function and separatrix with an increase in the phase
current density of beam on plane ¥. »,. However, all quantitative
results related only to the selected particular values of parameters
¢s- ﬂ% and it did not make it possible to explain how are changed
solutions during the variation of the values indicated. The
relationships/ratios, which describe space-charge effect on the
longitudinal vibrations of particles, prove to be simpler and easily

more forseeable, if one assumes that synchronous phase ¢, and the

phase of particle ¥ they are small in the absolute value
N ARG R

In this case it is possible to lower a number of independent
parameters in equation (4.23) up to two, which substantially
simplifies task. The requirement of the smallness of values ¢ and
i¢s- is not strong. The power series obtained with the expansion of
trigonometric functions rapidly converge, and already the second
approximation/approach proves to be sufficiently to precise ones.

Virtually it suffices to require satisfaction of conditions
el <li i<

Having expanded function (4.13) in the power series of V¥ and

¢ and after being restricted by the members of the third degree, we

will obtain

Oy (9) = ~ 1~ 5 ¥t + .

L |
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Let us introduce the new variable/alternating

LA a

A= —_ y=

Then
@, () = 93] (x)— 1, (4.46)

where
®3(x)=—é—<x’-—% x=>. (4.47)

Coordinates of center, saddle and second boundary of the region of

phase stability in the new variable/alternating

Page 283.

By analogy with expression (4.46) let us introduce into the
examination new potential function @ (x), connected with function

®(¢) with the equality
@ (p) = ¢ (x)— I (4.48)

Let us accept, furthermore, the following designations:
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D = D* (x.): (449
\. - - l -‘D.x.:—:l-’;(\:\ -
R N 4 5y
%, } O —D*(xg)

After passing in integral (4.39) to the new variable/alternating, we

will obtain

A

A=

$s

Yard integral equation (4.24) in the new variable/alternating it is

reduced to the form

R(¢.a)= g, H'-IT’*(x—y)"—l—(.r—g/)i‘ (1.oh

Here

r= R.

- (4.52)

L.
Y ! ﬂ A

wola!

"
Parameter I' makes simple geometric sense. This parameter is
proportional to the ratio of a transverse radius of cluster to the
longitudinal length of cluster in the beam of zero intensity. It is
obvious that with the decrease of value I' the forces of longitudinal
Coulomb pushing apart must decrease, since cluster in this case is

extracted lengthwise.

Let us pass in integral equation (4.23) to the new
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variable/alternating of integration y. Taking into account formulas

(1.62), (4.46), (4.48)-( 4.51) let us arrive at the equation for
potential function 4

X

®* (x) = F (x) - A3 | R* (x. y) | OT= D% (1) duy.

Xk

(4.5.5

Kernel of equation (4.53) has the form

R*(x, ) =g [V TT= (=gt — ) Tx=w?].

(4.04)
Coulomb parameter of equation (4.53)
he=+T2 ¢, -hy (455

or

. 4] TA* ! .

h = ———m s ., (4.26)

YU LV BYWh e Ve }
Page 284.

In the approximation/approach accepted the equation of separatrix is

converted as follows
F ()= V2[DI— D (x)] .

For the beam of zero intensity x.=2; ®!=2/3. Hence

Folx) = ’V‘?;_' @—x)Vx+1. (4.57)

Function (4.57) is given in Fig. 4.12, In the same figure for the
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comparison dotted line showed the same function, calculated according

to strict formula (1.59a)

Fo(p)=V2 ) T~cosp—(y—sinp~2g, ctg ¢, .

Both functions are calculated when ¢,= —0,65 From Fig. 4.12 it is
evident that approximation (4.47) transfers well the behavior of

potential function.

The giving rise to function of integral equation (4.53) does not
depend on synchronous phase. Hence it follows that the solutions of
integral equation (4.53) at the given values of parameters [. Ag
remain valid during any selection of synchronous phase. This
considerably facilitates the numerical integration of equation and
simplifies the analysis of solutions., It is obvious that also value
A®* on the selection of synchronous phase does not depend. Therefore
the formula, which connects peak tone with the average/mean beam

current,
lep = % A*l (4.40a)

in the approximation/approach accepted is accurate at any values ¥«

For the beam of the zero intensity

2
A =7}S 2—x) Vx~1dx,

1

whence A‘=-J

5

feo
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Fig. 4.12.
Page 285.

Thus, for the beam of the noninteracting particles
lp=104282y - (4.58)

Analogous with expression (4.31) as a result of dual

differentiation of equality (4.53) we will obtain

Qg * 4y e .
Zai (%) — d:; (%0) =—IT’:! VOE=D%(x0) (1=M*). (4.59)

where

P
rz « ‘/Oz._w‘ (y) NBR*

M®=— e —— (xo. l)dy.

' :3,‘ Y Or—0%(xq) 9% oY

By the replacement of the variable/alternating of integration




YA

a=y ¢, it is easy to show

Y9

M® (xo. X¢o X4, T) = M(Il‘o' Yor Yo G o

It is evident that at the given value of shape factor [I° value M on

the selection of synchronous phase does not depend. From expression

(4.43) and latter/last identity it follows

1 Xp =X TR XTI 1 -
M = = _ e lmmmmm e ) i4.00)
B2 L) = (re —xg)2 ) T2 Gp—rg !

Since from relationships/ratios (4.25), (4.55), (4.59) we have

423 aps .
[= IL iy { n)—“‘f‘:‘ («Vo)_i T e

that hence it follows that formula (4.44) determines maximum peak
beam current at given values TI./, independent of the value of

synchronous phase. Obtained above numerical relationship/ratio

Inpe: =3.85 Iy is correct for [ -.0.i15. With the decrease of shape factor
I' value M. monotonically grows/rises. In this case M. approaches

unity and limiting current with given one /v increases.

————
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The characteristic value of current /. (4.26) can be represented

in the form
lw“‘—‘gw’k tg‘?s‘\:%\‘)z/o- (Loh

and it on energy of particles does not depend. However, with an
increase in the energy of particles increases the longitudinal length
of clusters and falls shape factor I (4.52), which raises the
limiting value of peak current. Thus, Coulomb pushing apart has the
greatest effect on longitudinal vibrations as to the transverse ones,
with the low energies. The estimations, connected with space-charge
effect on the process of phase stability, should be carried out for

the energy of injection.

e




i
|
|

s¢4
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An increase in the energy of injection makes it possible to raise the
limiting current of beam and, correspondingly, to lower the effect of
Coulomb interaction on the value of the capture region of particles

into acceleration mode.

The limiting current of beam grows/rises also with an increase
in the specific acceleration. As can easily be seen, this is
connected with the fact that an increase in the specific acceleration
with the assigned energy of injection leads to an increase in the

frequency of longitudinal vibrations.

The effect of longitudinal Coulomb pushing apart very
susceptibly/critically depends on selection of synchronous phase.
With the decrease of the absolute value of synchronous phase is
decreased the longitudinal length of clusters, which leads to an
increase in shape factor T. On the other hand, decrease ¢, causes a

drop in the frequency of longitudinal vibrations and corresponding
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the decrease of the characteristic value of current. Both these of
effect act in one direction and lead to the considerable decrease of
limiting current. At the low absolute values of synchronous phase
longitudinal Coulomb pushing apart can prove to be the basic reason

for the limitation of beam current in the accelerator.

The mean radius of beam R. is proportional to the aperture of
accelerator a. As shown in § 3.7, with an increase in the wavelength
of the accelerating quotient field a/\ can be within some limits
increased proportionally A. Therefore the characteristic value of
current (3.61), other conditions being equal, will increase
proportional to A?. However, from expression (4.52) it is evident
that shape factor I' will in this case with an increase in the
wavelength of accelerating field grow/rise, which impedes an increase
in limiting current (4.44). For the evaluation of combined effect of
both oppositely acting effects we convert expression (4.60), after
assuming I'* «l. After expanding right side (4.60) into series about to
degrees I'* and after being restricted by member, linear relatively

I, we will obtain

r 1 1
Ma=1-I [(xc_xo), + _m,] . (4.62)

In the same time from equality (4.61) it follows

2
le= 2 Wigll tg | 1y, (4.63)
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Thus, relation [, (1—M«) on the shape factor in the first
approximation, does not depend and, therefore, change R-%* other

conditions being equal, the limiting current does not affect.

Let us assume gy =Gq X x0 and let us substitute

expressions (4.62), (4.63) into equality (4.44):

2,2
*k

v,
2 c

Inpes = 57 i Pe B2y, Pras

[

By the extrapolation of graphs/curves in Fig. 4.9 to k=1 for limiting

values %. xx whenT=0615 and ¢,=—0.65 we obtain % =1.43: xx= —0,66.
Then
Inpc;l x L’A— s 362Y2[0. (40‘4)
23
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A change in the wavelength of accelerating field does not directly
affect limiting current, determined by longitudinal pushing apart.
Nevertheless with an increase )\ appears the possibility to raise
specific acceleration, which with the conservation of energy of
injection makes it possible to raise the limiting value of current
and, therefore, to decrease space-charge effect on the capture
region. Expression (4.64) makes it possible to quantitatively
rate/estimate the effect of the selection of synchronous phase on the

maximum intensity of beam. Let us return for the numerical example,
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given at the end of § 4.2. If we decrease the synchronous phase from
37 to 20°, then with the retention/preservation/maintaining the given
values of energy of injection and specific acceleration limiting
current decreases approximately six times and longitudinal Coulomb
pushing apart it proves to be the already basic factor, which limits
beam current. Therefore any methods of focusing, which require the
considerable decrease of the absolute value of synchronous phase,

i lead to a reduction in the maximally possible intensity of beam.

S 4.4. Effect of beam on accelerating field.

The accelerafion of the beams of high intensity advances number
of radio engineering problems, since interaction of beam with the
field leads not only to the effect of particle acceleration, but also
to a change in the parameters of accelerating field. The accelerated
beam is grouped into the clusters, which follow with the frequency of
accelerating field. These clusters aim on the elements of the
accelerating system supplementary high-frequency the current, which
leads to a change in amplitude and phase of field. In the principle
occurs also the detuning of resonators with the load by their beam.
On the stability of amplitude and phase of accelerating voltage are
superimposed the close tolerances. Therefore the effects, connected

with the effect of intense beam on accelerating field, can lead to

the limitations of accelerated current. At the selection of the




SO Ty Yy e~y

i\ LA Al et Al M . A

T

DOC = 82105214 PAGEM

diagrams of the supply of the accelerating devices/equipment and
diagrams of the automatic control of the parameters of field one

should consider the effects indicated.

We will be restricted to the case when the resonance elements of
the accelerating system are supplied from the separately-excited
generator. The given calc¢ulations can be attributed to any
construction/design of the accelerating system. However, for the

concreteness is examined the accelerating system with drift tubes.

Fig. 4'13.
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Let us replace one it cut off cavity resonator by equivalent
duct/contour with the concentrated elements/cells let us examine the
capacitor/condenser of duct/contour, threaded by the bunched beam
(Fig. 4.13). To account for the high-frequency power, introduced into

the cavity resonator, with the duct/contour is connected equivalent

v S
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source emf. It cut off cavity resonator it is characterized by three
parameters: by natural frequency w; by the quality
. £
Q=wp2, (4.65)
where W,— average/mean within the period stored up energy in the

electric field, ~P,— high-frequency power of ohmic losses; shunt - by

the impedance

Ve
Z= Py (4.66)

where V - amplitude value of stress/voltage on the accelerating
clearance. The parameters of equivalent duct/contour are connected

with these values with the relationships/ratios

Q. Z_ . z

Le+qg(t) - the charge, induced to the plates of capacitor/condenser

during this instantaneous location of the charges of beam. Regarding,

value da (0
lnn (t)='th-‘

is called the induced current. The full current through the
capacitor/condenser is equal to the sum of the bias current and

induced current:

W, , dg
hh=Ct+3f.

From the theorem Shockley-Ramo [128, 129] escape/ensues following
connection/communication between the induced current and the beam

current, which penetrates parallel-plate capacitor [130],
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—_—i

Inas (2) =£ I.(z. t)dz. (4.68)

<

Here g - distance between the plates of capacitor/condenser
(approximately equal to the length of the accelerating clearance):
I.(z, y— the alternating current component of beam in the function of
longitudinal coordinate and time. According to expression (4.68), the
induced current at the given moment/torque t is equal to the
value/significance average/mean at the gap length of the variable

part of the beam current at the same moment/torque t.

Page 289.

Current in duct/contour /t and voltage across capacitor U. they

satisfy the equations

LOL srly+U.=3(1);
I =C 2 + L (1),

t

(4.69)

where J3(/)— electromotive force of equivalent generator (Fig. 4.13).
the induced current in the general case - sum of two components.
First component I°(t) does not depend on accelerating voltage Ue the
second depends on amplitude and phase of accelerating voltage. In the
linear approximation/approach this dependence can be represented in

the form

g
dt

Laas (1) = 10 (1) +-,$;U¢+ Cn (4.70)
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Coefficients %—.Cud some dimensional values whose values will be
n

calculated below. After the substitution of expressions (4.67),
(4.70) in equations (4.69), we will obtain

a w dUe . @ L, d @ g
d;'*b;:'dz’“%uf‘c m%z[mQ3“) Z _d T'Ql' 1'
47D

where

Thus, if the induced current depends substantially on voltage across
capacitor, then duct/contour is disturbed/detuned. In this case

changes also the energy factor of duct/contour.

The induced current to calculate more simply, if we in
expression (4.68) replace the variable/alternating of integration.
Let us introduce instead of the longitudinal coordinate z new

variable/alternating

dz
IR (4.74)

wvhere v - the longitudinal velocity of particle in the clearance.

T=1—

Oy 4t

Variable 7 - is the moment/torque of the time when at the entrance of

the accelerating clearance appeared the particle, which achieved




DOC = 82105214 PAGE g;iz

coordinate z at a given moment in time t. In § 4.2 is obtained the

distribution of prompt current along the cluster
L) =lep+ 1. (¥).

Subsequently all phases we will count off from the moment/torque when
attains maximum voltage across capacitor

U =V,cos ot

in the duct/contour, not loaded with beam.
Page 290.

Phase y can be represented in the form

Y =0c— Py,
where ¢, - phase of the unloaded field at the moment/torque when at
the entrance of clearance appears synchronous particle. Hence it is
apparent that current I depends only on variable/alternating 7. Since
time t in integral (4.68) is fixed/recorded, dz=-vdr and integral

(4.68) is reduced to following form [130]

1
Tuas (1) = ( I-(®)v(t, T)dr. (4.75)

T

1
[
8

Value t; relates to the particle, which reaches at moment t of the
second edge of clearance z=g

dz

Tyg=fam \ —
4 PRk

[ LY Y

e
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Disregarding the scatter of longitudinal velocities, let us
suppose that all particles fly into the clearance with one and the
same average speed v,, equal to the velocity of the motion of cluster

as whole. Voltage across capacitor, loaded with beam,

U, (t) =V cos (of —O). ' (4.76)

In the unloaded duct/contour V=V,; 6=0. In the transient
mode/conditions amplitude and the phase of stress/voltage (4.76) -
the functions of time, slow in comparison with the period of
high-frequency field. We will be restricted to nonrelativistic
approximation/approach. Particle motion in the clearance satisfies

the equation

a3z eV
an = W Cos ((l)t —8),

moreover %§=ﬂh with t=r, Hence

v(t, ) =uvp[l +eu(t, 7)), (477)
where
¢ = eV
mogwoy

u(t, t)=sin(of —6)—sin (w1 —6),

Dimensionless parameter e can be written in the form

(4.78)

| 4
‘4nall, '

where a - coefficient of clearance (1.23); U,— current energy of
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synchronous particle, expressed in the electron volts:

L4
U.=_e'£—.

In the linear accelerators, as a rule, ¢ ¢ ]. Let us calculate the
fundamental harmonic of the induced current, holding the members of

the zero and first order of the smallness of relatively low parameter
€.
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From equalities (4.38) it is evident that at the constant phase
density within the separatrix the amplitude of the odd harmonic of
current is small in comparison with the average/mean beam current and
with the amplitude of even harmonic. We will obtain accuracy
completely sufficient for our purposes, if let us assume that the
cluster is symmetrical relative to synchronous particle. We
approximate the law of current distribution éibng the cluster by the

following even function

(1))
[OWH¢<—w.:
Tg)=11 - <Y< g, :

0 ¥ >, .

Key: (1). with.

wvhere I - peak beam current. The coefficients of the first three
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members of Fourier series
na={

in this case will take the form

i 2si in2 -
lcp= (.ft“[; 11‘—"ﬁ":‘&12 /3=&%1. 4.7M

When '¢,'=0,65 we will obtain the following values for the
average/mean current and the amplitudes of the fundamental harmonics:
lp=0,206/; I.=1,=0,385]; |,=0. which is close to values (4.38). The

alternating current compdnent of the beam

I.(v)=1,cos (0T —¢,) + 1,052 (0T — Py) = . .. (4.80)

Further, if moment/torque t is assigned, then the lower limit of
integral (4.75) is determined in the first approximation, by the

equation
4
L (G, 1 de. (4.81)

=t
Tg=1 vo+ v )

Transition from one argument t to the next z in function u(!. T.) can be
completed, using zero approximation to equality (4.74)
2
t=‘t+'a '
since function u(z, r) it enters into the terms, which are of the

order . Thus,

-

u(z, T)=sin <(o1¢ -j--:’—:-——e\l‘:—sin (0T — ),

Page 292.
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After substituting latter/last ermression into equation (4.81) and
after holding down/retaining terms not higher than the first order of
smallness, we will obtain

Tg=Tg+EATg, (4.82)

where

g .

‘Cg—t—v—o.
2aa
©

At =

[ ’"; % sin (ot — 8 — sta)—sin (of — 8 — 27a)].

Finally, introducing expressions (4.77), (4.82) into integral (4.75)
and retaining the first-order terms of smallness, we have

o
AL

luaa () =22 | 1 (1) —';iSI (dv+e 2 | I (7)ult,7)ds
g

"‘gt/a -

ot -

(4.83)

First term does not depend on low parameter . and gives zero

approximation to the induced current

¢
4/
()= —g9- S I.(x)dr.

t- L
e

Second and third terms contain the members of first approximation.
Zero approximation to a resonance harmonic of the induced current is

equal

)= 2"‘2” sin ——cos (mt—q;, t) .
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Value

4
¢c=¢a+(ﬂ*2.jo‘

is the phase of the unloaded field in which the middle of cluster
passes the center of the accelerating clearance. This phase differs

from synchronous, since the latter is counted off from the maximum of

the loaded field (Fig. 4.14):
(pc-.zw.-'re.

Taking into account expression for I, (4.79) zero approximation is

reduced to the form

I° (t) = Iy cos (0t —¢); (4.84)

[ TRLILINLELY (4.85)

Let us determine the power, selected/taken by beam from the
high-frequency field in the clearance. For this it suffices to use
zero approximation to strength of induced current:

2n/w

Pa=o- S 19(t)Ue () dt.

0

Page 293.

After substituting into the integral of function (4.76), (4.84), we

have
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1
P.,=?l.,Vcosq\. (4.86)

or, taking into account of expression (4.79), (4.85),

Pa=1VT cosg, %w : (4.87)

S

Parameter

sin na
="
na

in equality (4.87) - the factor of transit time. If one considers
that at the length of accelerator all particles, seized in
acceleration mode, acquire on the average the same energy, as
synchronous particle, then the power, selected/taken by beam from the

high-frequency field, taking into account one clearance will comprise

Py =1 VT cos g,. (4.88)

Expression (4.87) differs from expression (4.88) in terms of factor
#%E. close to unity. This factor arose in connection with the fact
that during the derivation of formula (4.87) is not considered mixing
particles at the length of accelerator, connected with the

longitudinal vibrations.

In order to obtain in sum (4.83) the resonance members of first
approximation, it is necessary to utilize the second harmonic of beam
current in expansion (4.80). The fundamental harmonic of beam

current, as it is possible to be convinced, does not give the
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contribution tc the resonance terms of first approximation. After the
appropriate substitutions and integration from expression (4.83) it

follows

1 g Sin 2na
laas () =10(t) —gely 1 =302 g o2+ 8)  (4.89)
N M 7/
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wr

[l

Fig. 4.14.
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A.ter substituting into equality (4.89) for values ¢ and I,
respectively of expression (4.78), (4.79) and after passing from the

peak beam current to the average, we will obtain

Isan () =1°(t) + Y [V sin 29, cos (ot — 8) —V cos 29, sin (of — 6)).

Value

Y= _Jc» < __ sin2aa \ sin2g,

= 4nal, 9na TN (4.90)

has a dimensionality of conductivity. According to expression (4.76),

V cos (0t —8) =U,;

-3
w dt -

—Vsin (0t —8) =
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Hence we have

7.
1 luaa(f)=1°(!)—-y\;\Sln2q}‘~L'c“'9'sz,2&'%_>'

e

The parameters of beam R;. Cn are determined by expression (4.70).

Thus,

1 .
:Q?= Y sin 2'3P.2 ‘

{ (4.91)
Cp= . Y cos 2q,.

Conductivity Y is proportional to the ratio of average/mean beam
current to the energy of particles and, therefore, very low value. As
shown below, usually Ra>»Z. From equality (4.91) it is evident that
value i%‘ and ,C,— one order. Therefore it is possible to disregard
second term in the numerator of expression (4.72) and to obtain the

following approximation formula for the relative frequency switch of

the loaded duct/contour

%‘3 = — % €OS 2¢,.

The beam, seized into acceleration mode, decreases the natural

frequency of resonator. The equivalent energy factor of the loaded

duct/contour is determined by formula (4.73), from which it follows
_ Q
Qors = I+YZ sin 29, °

Let us note that quality K g,, does not determine total losses in the

loaded duct/contour, but only that part of the losses which depends
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on voltage across capacitor and corresponds to linear processes in
the duct/contour. Basic part of the losses, connected with the
acceleration of beam, is determined by expression (4.86) and in the
first approximation, does not depend on the amplitude of accelerating
voltage, since under the assigned law of an increase in the lengths

of drift tubes V cos ¢, = const.
Page 295.

Generally, the concept of the energy factor of oscillatory circuit
regarding relates only to the linear processes. However, the losses
of power for acceleration (4.86) lead to the fact that the loaded
duct/contour proves to be nonlinear; so that this part of the losses
cannot be, strictly speaking, expressed through the equivalent

quality. In loaded mode/conditions Q,.> Q. since ¢,<<Uu.

Fco the numerical estimation let us accept the following values
of the parameters: A=2m; cosgq, = 0,8; a =025 L, =70 kevV;
Q=80000; shunt-impedance for the unit of the length of resonator
Z,=20 MQ/m. Then Z=Z,BA=1,6+10¢ ohm. Let the average/mean beam
current be equal to 100 mA. In this case of ¥=1.2:10"* Q-*;
%’=_3.5.10-u; Quwu Q - 1,020 Thus, the displacement of the natural

frequency of resonator and change in its quality prove to be

negligible. Frequency switch composes approximately 3:10-* widths of

. LMl vt 2 e pamsay |

e e LT T T
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resonance band at the level 0.7. With an increase in the energy of
the particles of the change in the natural frequency and quality
decrease. Actually/really, since (.==p* that Y=8-?. Shunt-impedance

of section is proportional B. Consequently, YZ=8-*',

From the given numerical estimations it is evident that in the
ionic linear accelerators it is possible to disregard the members of
first approximation, who are determining the dependence of the

induced current on the stress/voltage in each accelerating clearance.

Zero approximation to induced current (4.84), (4.85) sufficiently
precise and can be used for the evaluations of effects, connected

with the effect of beam on accelerating field.

Let us return to equation (4.71), after assuming(n - U £~ .

A}
"

Since the quality of the accelerating system usually is sufficiently

high, let us disregard/neglect also the effect of the induced

current, connected with the ohmic losses, assuming/setting

!dlol’

I e |
-_ M & —
Qll I Rc'<(l).3dt IMaKc

As a result we will obtain the following equation of the loaded

duct/contour
MU, , 0 dU, . z 40 N
dt’c +6o—dt +w-U,=m23(t)—%_ . .ddit_ (1). (4.92)

In this case it is assumed that the natural frequency of the
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accelerating system coincides with the frequency of accelerating

field.

1f generator works in understressed mode/conditions [131], then
equivalent emf, introduced into the duct/contour, in the first
approximation, does not depend on the amplitude of voltage across
capacitor. Regarding, steady voltage across capacitor of the unloaded

duct/contour is equal
Ut (t) =V,cos wt. (4.93)

Let us accept for simplicity, that the phase of current in the
coupling loop does not depend on the parameters of field in the

resonator.
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Equivalent emf, which corresponds to generator in the understressed
mode/conditions, must take the form
() =~ sinat. (4.94)

But if generator is found in the overstressed mode/conditions, then
equality (4.94) remains valid only in the stationary unloaded state,

and in the transient processes, by the specified load of duct/contour

by beam, equivalent emf is changed depending on the current amplitude
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of voltage across capacitor. By analogy with equality (4.94) let us
accept in the general case the following expression for equivalent

emf, introduced into the duct/contour of the generator

3(t)=—F sinat. ' (4.95)

Then in understressed mode/conditions V.=V,=const, in the overstressed
mode/conditions, according to expression (4.76), V.=V, (V), moreover
V=V, with t<0. The moment/torque of time t=0 corresponds to the

beginning of the injection of beam into the accelerator.

Let us substitute into the right side of equation (4.92)

expressions (4.84), (4.95)

‘%" +5 i‘ﬁ—ji + @ U, = %2 (—V,sinot 4 Zlq sin (0f—gc)).  (4.96)
Into equation (4.96) enters phase 9., with which the center of cluster
is passed the middle of the accelerating clearance. With was examined
the action of the induced current on the single duct/contour, this
phase ‘could be assigned arbitrarily. In the linear accelerator phase
Pc is not arbitrary. In order to cable phase 9 to the
stress/voltage, which acts in the clearance of this section, it is
necessary to consider the character of the motion of clusters along
the axis of entire accelerator. 1f beam do:s not undergo preliminary

grouping, then clusters in the transient mode/conditions are

- formed/shaped around synchronous phase g, (f). of that corresponding to




"
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this instantaneous value/significance of the amplitude of
accelerating voltage V(t), which changes in the process of the

establishment
V (t)cos @, (¢) =V, cos @, (0) = const. (4.97)

In this case coherent component of longitudinal vibrations is absent
and the centers of clusters will pass the middles of all accelerating

clearances to one and the same phase %« of the equal to

Pe () =B () +- o, (2). (4.98)

Phase ¢. in the process of establishment changes, in the first place,
due to a change in the amplitude of accelerating voltage V(t), and,
in the second place, due to the phase shift of this stress/voltage
relative to stress/voltage in the unloaded resonator 6(t). But if
beam undergoes preliminary grouping, then to determine phases ®c (/)

for each clearance is complicated.
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Due to a change of the synchronous phase in the process of
establishment appear coherent longitudinal vibrations. A change in
the amplitude of the loaded field leads also to the frequency switch

of longitudinal vibrations, and phase ¢. (/1 for each clearance proves

to be the very complex function of longitudinal coordinate and time.
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For simplification in the task we will consider that the beam
does not pass buncher and clusters are formed/shaped in the linear
accelerator. In this case let us assume that the particles, not
seized into acceleration mode, do not interact with the field or they
are lost sufficiently rapidly, so that in the first approximation,
through each accelerating clearance passes only the bunched beam.
Then for calculating the transient processes it is possible to use

relationships/ratios (4.85), (4.98). The amplitude of induced current

/y (4.85) depends on synchronous phase and is function from the
amplitude of accelerating voltage. Thus, parameters }: /,, ¢. in the

right side of equation (4.96) are connected with the amplitude of

accelerating voltage with nonlinear dependences and they are also the

slow functions of time.

The equation of establishment (4.96) can be simplified. We

differentiate equality (4.76)

Le = 2 cos (0t —8)+ (22— Vsin(w—6).
Since by equality (4.76) instead of one unknown function U.() are
introduced two the unknowns V(t), 8(t), on the variable/alternating

Vv, © it is possible to apply one arbitrary condition which let us

select as follows:

—
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dv ) ae .
< ¢os (0t —0)+V 27 Sin(wt—6) = 0. {4.99)

Then it remains
at
Tt‘: —wV sin (of — 8),
Let us substitute function U. (4.76) in equation (4.96). Taking into

account condition (4.99) we will obtain

dav . de
— - sin (of —8) fvwcos(mt—e) =

wly @

== sin o = 2 Ziy sin (wf — @¢) ~,-%Vsin(mt—9). (4.100)

Further, let us solve equations (4.99), (4.100) algebraic overally

av v ae

unknowns T V-

Let us arrive at the system of two first-order
equations. This system, generally speaking, is not simpler than
initial differential equation (4.96). However, now it is possible to

use the "s.owness" of functions V, 6.
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Namely, let us integrate piecemeal system of equations of

first-order, solved relative to derivatives, for the period of high

frequency. All slow functions we will consider constants in the
period 2r/w and le:t us remove them from under the integral signs. As

a result we will obtain the following shortened equations of
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establishment [132, 23]:

%: E"(;_(Vr cos®—Z], cosq, — V).

a0

X ‘ (4.101)
.d_[‘= —W(Vrslne-f-zlnsm(h)-

When generator is disconnected from the duct/contour and the latter

is not loaded, then

-9

v
&

==

w
— V.

Hence it is apparent that value

w=22 (4.102)
is time constant of a field slope in the unlnaded accelerating system

after the cutoff/disconnection of high-frequency oscillator.

Are of interest two limiting cases. If the duration of beam
substantially exceeds the éime of the establishment of field, then
the acceleration of basic part of the beam occurs at the steady-state
values of amplitude &nd phase of field, that correspond to the loaded
mode/conditions. We deal, actually, concerning accelerat:on mode of
steady beam. In this mode/conditions computed value of synchronous
phase must be established/installed with the stationary awnplitude of
field in the resonator, loaded with beam. In the second case the

duration of beam is considerably less than the time of the

establishment of field. Acceleration occurs due to the energy,
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preliminarily accumulated in the resonator unless are taken special
measures for power boosting of oscillators of the period of
acceleration. The second case corresponds to the pulsed operation of
accelerator and is utilized in essence in the linear
accelerator-injectors. In the pulsed accelerators computed value of
synchronous phase is established/installed with the amplitude of
field, which corresponds to the unloaded resonator. Amplitude and
phase of field for the time of the passage of pulse beam must remain

within the limits of the assigned close tolerances.

Let us examine, first of all, steady locaded state. In steady

state

and conservative values of amplitude and phase of accelerating

voltage V, 6 satisfy the equations

Vrsin® = —Zl,sing,;

4.103
VecosO =V 4 21, cos ¢,. ( )

In these equations Iw »s— conservative values of the amplitude of

the induced current and synchronous phase.
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After dividing equations (4.103) on V and after considering
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relationships/ratios (4.66), (4.86), we will obtain

) Ve o P Uy P,
2riint = — M tog c S TeosH=1. 1
[ sin P tg g .: v cos ¢ | p

Al

where Pu— power, spent on the acceleration of the beam: p, - the
power of high-frequency losses in copper in steady loaded state.
Hence

R SRS N O SRIET

R Py =
P“—P $Y4.. (v«l_l()u)

“

tg(‘)z _

Since ¢,<<0. that 6>0; high-frequency field in the loaded
resonator lags on the phase relative to field in the unloaded
resonator. From equation (4.104) it follows that the stationary
amplitude of stress/voltage in the loaded clearance V is
unambiguously connected with relation Pn P«. since, according to
relationships/ratios (4.97), 8¢,— single-valued function V.
Equalities (4.66), (4.86) give

Py _ 22P,

Py = VE (4.106)
or

p Z
Tn;=“v‘l"°°5¢3'

Relation P,/P« in each section of resonator in the first
approximation, does not depend on energy of particles, in view of the
fact that z=g; v=8; /. as follows from formula (4.85), with an
accuracy to the constancy of the factor of transit time it remains

identical in all clearances. Thus, amplitude and phase shift of the
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loaded field is approximately identical in all sections of resonator.
The load of high-frequency field with beam current does not lead to
the "inclinaticn/slope" of field, if only are retained the
average/mean current of the accelerated beam and the linear value of

shunt-impedance along the axis of resonator.

The obtained above stationary relationships/ratios remain valid
and in the case of preliminary beam bunching. If beam passes through
the buncher, then it is necessary that the clusters at the entrance
of linear accelerator would be seized into acceleration mode in
amplitude and phase of field, that correspond to the unloaded
mode/conditions. From relationship/ratio (4.105) it follows that this
condition is satisfied always. Actually/really, according to
expression (4.105), with any value of load V< 4.. Bunching
parameters are such, that the centers of clusters pass the middle of
the first clearance to phase ¢, relative to the loaded field;
relative to the unloaded field (in the constant phase of the
oscillations of stress/voltage in the buncher) the centers of

clusters are passed to the phase

Pc=8+¢q,<0.

Page 300.

This inequality provides the capture of clusters into acceleration
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mode in the unloaded field, since the right boundary of the region of
capture exists 4« = ¢,. If buncher is supplied by the high-frequency
energy, directly abstracted/removed from the first resonator, then
latter/last inequality is improved, since disappears parasitic phase
displacement 6 between the fields in buncher and resonator of

accelerator.

Let us examine in more detail case V:r = Vo =const. Let us
substitute relation (4.106) in equation (4.104). Let us arrive at the

biquadratic equation

422P

__(l/r 6o __ __ o
| (V:—4zZP)V cmzw'_.a
Hence
cyehr_ -ZPn 2P, \? 2ZP, Nt -
".0 — o i: V V,“) V;cosn‘p.) . (4.]0[)
Thus, if carried out is the condition
vi_ 2ZP
2 2P > (4.108)

then there are two values for the stationary amplitude. The presence
of two values for the stationary amplitude in the loaded
mode/conditions is explained by the fact that the power, taken away
in field by the beam, seized into the acceleration, does not depend
on the amplitude of field; therefore the loaded system proves to be
nonlinear. As shown subsequently, the upper value/significance of

amplitude is stable, and lower is unstable. In proportion to an
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increase in value 2%%L both roots (4.107) converge, moreover stable
amplitude decreases, and unstable increases. With

Vi _2zp,

o = 2ZPa =200 (4.109)
both amplitudes they pour at metastable point, and biquadratic

equation has the multiple root, which corresponds
<1L>’,___J___
Vo 2(l+4cos @) °
Thus, any stable stationary amplitudes satisfy the condition

v
(—})'<2(l+cos¢.). (4.110)

But, according to expression (4.106),

-P_“== 2ZP, ‘/ %) \/:-
N

P VR

Taking into account expressions (4.109), (4.110) we have
P
-5;“—<cow.. (4.111)

Page 301.

This relationship/ratio between the power, spent on the acceleration,
and the power of losses in copper determines the condition for
existence of stable stationary amplitude in the resonator, loaded
with the steady beam (during the understressed mode/conditions

oscillator). From formula (4.105) and condition (4.111) it follows

tge<tb~ qu’;‘_ '
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so that phase displacement of the loaded field of that of relatively
unloaded does not exceed -g 4. . Latter/last inequality substantially
more precisely formulates formula (4.105), but it is correct only

when V. const.

Upon the acceleration of the beam of high intensity condition
(4411) can prove to be disturbed. In that case stable stationary
field will exist only during the overstressed mode/conditions of

oscillator.

The obtained results, which relate to the stationary loaded
field, have simple geometric interpretation. Let us multiply the
first equation of establishment (4.101) by the instantaneous value of

the established/installed amplitude V

2

l-d—W:-_%—Wr\v'cosﬁ—ZI,.Vcosq,—\"-'}. {(4.112y

But

is average in the period the value/significance of the energy,
accumulated in the electric field, and

P,= -1; IV cos g,
there is the power, spent on the acceleration of beam. Let us replace

the instantaneous value of the amplitude of stress/voltage in

equation (4.112) with the medium energy, inclined in accelerating
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field, and will place cos 6-1. After considering relationships/ratios

(4.67) and after designating

A=V, 1/;2’,“7

we will obtain

dw. W .
'd—ta=f1r‘ Wa—%-W;,—P“. PR Y

Formula (4.113) is the equation of the energy balance in the
resonator. On the left side stands rate of change in the energy of
accelerating field, while in the right - difference between the
power, given up by the oscillator

P.=A W,
and the sum of the losses to the acceleration and of losses in

copper. The process of establishment is conveniently examined on

aw’,

plane W, - °.
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Pig. 4.15 gives the diagrams of the establishment of field. Straight
lines correspond to the law of an increase in the high-frequency
losses, parabola ~ to law of an increase in the power, given up by
oscillator in the case A, = const (understressed mode/conditions). The
abscissa of the point of intersection of parabola with straight line

1 is equal to the steady-state value of the medium energy of unloaded

field W;. The load, introduced by beam, leads to the parallel
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displacement by the straight line of high-frequency losses upward. To
case (4.108) correspond straight/direct 2; it is easy to see that the
upper state of equilibrium is stable, and lower is unstable. If
oscillator does not cover/coat total high~frequency losses, then
condition (4.108) is not satisfied and the steady states of field are
absent (straight line 3). For the compensation for total power losses
of oscillator must be raised; parameter A: in this case grows/rises.
However, if losses to the acceleration are too great,'so that
condition (4.111) is not satisfied, then the assigned stationary
field will prove to be unstable (parabola, carried out by dotted
line). The stability of the assigned stationary field can be then it
is provided only in the overstressed mode/conditions (dot-dash

curve).

Let us examine the pulsed mode of accelerator. For the analysis
of pulsed operation more conveniently to switch over to the equation
of the establishment of field. The medium energy, accumulated in
accelerating field, is connected with the amplitude of field on the

axis of accelerator with the general/common/total relationship/ratio

W3=a’E’. (4.1!4)

Coefficient a, is determined by the frequency of accelerating field,
by transmission mode and by geometry of the accelerating

devices/equipment, and also by parameters of dielectric, if the

latter is in the resonance volume of the accelerating elements/cells.
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In view Pn=const the equation of the establishment of field is

nonlinear:

dE. A (B) w® Pp 1
=, gl T (4.115)

Let prior to the beginning of injection in the axis of resonator be
established stationary unloaded field £=£, This value/significance
corresponds to the operational conditions of acceleration. Upon the
injection of beam the equilibrium is disrupted; however, for the %
transit time of the beam with a duration of ™= a relative field slope

En—E
x(0 =20

must remain within the limits allowances for the nominal amplitude.
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Since {x1<<1l, we can be restricted to the linear section of the

full-load saturation curve of oscillator near the operating point

AE) =, (E,) - i:E' (E,) E,x.

After assuming ¥1x1<<l, we will obtain the following equation for a
relative field slope

— (4.116)

where r, - time constant of a field slope (4.102), and dimensionless

parameter . is equal to

Q dA
Vp = ——:uu;,. dEr (E.)

and it is determined by the inclination/slope of the full-load

saturation curve of oscillator. In the understressed mode/conditions

of oscillator “+=" in overstressed mode/conditions v.>0. moreover,

as a rule *> l. Since x(0)=0, the equation (4.116) has the following
solution
i1 n
Py P T VT, -
x(t)=——‘:—\:_—;m—i,:[l—-e N ]. (411/’ _

A field slope near the working value depends substantially on the

full-load saturation curve of oscillator.

Le4 v-=0. Then when 1, <7 we have

x(t) ~'—top;;lnt.

But, according to expressions (4.65), (4.102)

—
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Puto = 2W3.

On the other hand,
P“ Ig= W'.,.

where , — energy, selected/taken by beam from accelerating field.

Page 304.

Therefore toward the end of the impulse/momentum/pulse of ion current

a relative field slope comprises

AE v,
= 4.118)

The ratio of the energy, selected/taken by beam, to the medium
energy, accumulated in accelerating field, must not exceed double the

allowance for the nominal value of accelerating field.

Let now v>0. If Y jis small and the condition

T
wl—=py
|+"r"“p‘:

is satisfied, then remains valid relationship/ratio (4.118). Bt if
v+>1, then a relative field slope remains small independent of the

duration of beam and comprises

Py

R

o8
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In this case it is assumed that power loss for the acceleration of
the same crder as high-frequency power losses in copper or less than
the latter. The case of a deep cooling of the accelerating system

requires separate examination.
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